
Embedded Coder™

Getting Started Guide

R2011b



How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Embedded Coder™ Getting Started Guide
© COPYRIGHT 2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 2011 Online only New for Version 6.0 (Release 2011a)
September 2011 Online only New for Version 6.1 (Release 2011b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Contents

Product Overview

1
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Code Generation Technology . . . . . . . . . . . . . . . . . . . . . . . 1-3

Code Generation Extensions . . . . . . . . . . . . . . . . . . . . . . . . 1-4

Target Environments and Applications . . . . . . . . . . . . . . 1-5
About Target Environments . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Types of Target Environments Supported By Embedded
Coder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

Applications of Supported Target Environments . . . . . . . . 1-8

Prerequisite Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
MATLAB Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Simulink Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10

Algorithm Development Workflows . . . . . . . . . . . . . . . . . 1-12

MATLAB Tutorials

2
About the Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
About MATLAB® Coder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
How Embedded Coder Works With MATLAB® Coder . . . . 2-2
Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Setting Up Tutorial Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Controlling C Code Style . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
About This Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

iii



Copying Files Locally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Setting Up the MATLAB® Coder Project . . . . . . . . . . . . . . . 2-5
Configuring Build Parameters . . . . . . . . . . . . . . . . . . . . . . . 2-6
Generating the C Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Viewing the Generated C Code . . . . . . . . . . . . . . . . . . . . . . 2-7
Key Points to Remember . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Learn More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

Generating Reentrant C Code from MATLAB Code . . . 2-9
About This Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Copying Files Locally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
About the Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Providing a main Function . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Configuring Build Parameters . . . . . . . . . . . . . . . . . . . . . . . 2-15
Generating the C Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Viewing the Generated C Code . . . . . . . . . . . . . . . . . . . . . . 2-15
Running the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Key Points to Remember . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
Learn More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17

Tracing Between Generated C Code and MATLAB
Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
About This Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18
Copying Files Locally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Configuring Build Parameters . . . . . . . . . . . . . . . . . . . . . . . 2-20
Generating the C Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Viewing the Generated C Code . . . . . . . . . . . . . . . . . . . . . . 2-20
Tracing Back to the Source MATLAB Code . . . . . . . . . . . . 2-21
Key Points to Remember . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
Learn More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22

Simulink Tutorials

3
About the Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Third-Party Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Required Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

iv Contents



Configuring Model and Generating Code . . . . . . . . . . . . 3-5
About this Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Configuring Model for Code Generation . . . . . . . . . . . . . . . 3-6
Checking Model for Adverse Conditions and Settings . . . . 3-11
Generating Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Reviewing Generated Code . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Learn More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15

Controlling Appearance of Generated Code . . . . . . . . . . 3-16
About this Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Customizing Code Comments . . . . . . . . . . . . . . . . . . . . . . . . 3-17
Customizing Appearance of Identifiers . . . . . . . . . . . . . . . . 3-19
Customizing Code Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20
Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21
Learn More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21

Configuring Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
About this Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
Creating Data Objects for Named Data in Base
Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23

Configuring Data Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23
Controlling Placement of Parameter and Constant Data in
Generated Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24

Including Signal Data Objects in Generated Code . . . . . . . 3-26
Effects of Simulation on Data Typing . . . . . . . . . . . . . . . . . 3-27
Viewing Data Objects in Generated Code . . . . . . . . . . . . . . 3-28
Saving Base Workspace Data . . . . . . . . . . . . . . . . . . . . . . . . 3-29
Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29
Learn More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29

Partitioning and Exporting Functions . . . . . . . . . . . . . . . 3-30
About this Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30
Changing Model Architecture to Control Execution
Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31

Controlling Function Location and File Placement in
Generated Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33

Using Mask to Pass Parameters into Library Subsystem . . 3-36
Generating Code for Full Model and Exported Functions . . 3-38
Changing Execution Order and Simulation Results . . . . . . 3-40
Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-42
Learn More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-43

v



Integrating Generated Code into External
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-44
About this Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-44
Relocating Code to Another Development Environment . . 3-45
Integrating Generated Code into Existing System . . . . . . . 3-46
Setting Up Main Function . . . . . . . . . . . . . . . . . . . . . . . . . . 3-46
Matching System Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 3-48
Building Project in Eclipse Environment . . . . . . . . . . . . . . 3-51
Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-52
Learn More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-52

Verifying Generated Code . . . . . . . . . . . . . . . . . . . . . . . . . . 3-53
About this Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-53
Methods for Verifying Generated Code . . . . . . . . . . . . . . . . 3-54
Reusing Test Data By Importing and Exporting Test
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-55

Verifying Behavior of Model with Software-in-the-Loop
Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-56

Verifying System Behavior By Importing and Exporting
Test Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-59

Testing with Processor-in-the-Loop Testing . . . . . . . . . . . . 3-62
Key Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-62
Learn More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-62

Evaluating Generated Code . . . . . . . . . . . . . . . . . . . . . . . . 3-63
About this Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-63
Evaluating Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-63
About the Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-64
Viewing Code Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-64
About the Build Configurations . . . . . . . . . . . . . . . . . . . . . . 3-64
Configuration 1: Reusable Functions, Data Type Double . . 3-65
Configuration 2: Reusable Functions, Data Type Single . . 3-66
Configuration 3: Nonreusable Functions, Data Type
Single . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-67

vi Contents



Installing and Using an IDE for the Integration
and Testing Tutorials

A
Installing the Eclipse IDE and Cygwin Debugger . . . . . A-2
Installing the Eclipse IDE . . . . . . . . . . . . . . . . . . . . . . . . . . A-2
Installing the Cygwin Debugger . . . . . . . . . . . . . . . . . . . . . A-3

Integrating and Testing Code with the Eclipse IDE . . . A-5
Introducing Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5
Defining a New C Project . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6
Configuring the Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . A-7
Starting the Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7
Setting the Cygwin Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8
Actions and Commands in the Eclipse Debugger . . . . . . . . A-8

vii



viii Contents



1

Product Overview

• “Product Description” on page 1-2

• “Code Generation Technology” on page 1-3

• “Code Generation Extensions” on page 1-4

• “Target Environments and Applications” on page 1-5

• “Prerequisite Knowledge” on page 1-10

• “Algorithm Development Workflows” on page 1-12



1 Product Overview

Product Description
Embedded Coder™ generates readable, compact, and fast C and C++
code for use on embedded processors, on-target rapid prototyping boards,
and microprocessors used in mass production. Embedded Coder enables
additional MATLAB® Coder™ and Simulink® Coder™ configuration options
and advanced optimizations for fine-grain control of the generated code’s
functions, files, and data. These optimizations improve code efficiency and
facilitate integration with legacy code, data types, and calibration parameters
used in production. You can incorporate a third-party development
environment into the build process to produce an executable for turnkey
deployment on your embedded system.

Embedded Coder offers built-in support for AUTOSAR and ASAP2 software
standards. It also provides traceability reports, code interface documentation,
and automated software verification to support DO-178, IEC 61508 and ISO
26262 software development.

Learn more about MathWorks support for certification in automotive
(http://www.mathworks.com/automotive/standards/iso-26262.html), aerospace
(http://www.mathworks.com/aerospace-defense/), and industrial automation
(http://www.mathworks.com/industrial-automation-machinery/) applications.

1-2

http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/aerospace-defense/
http://www.mathworks.com/industrial-automation-machinery/


Code Generation Technology

Code Generation Technology
MathWorks® code generation technology produces C code and executable
programs for algorithms that you model programmatically with MATLAB®

or graphically in the Simulink® environment. You can generate code for any
MATLAB functions, Simulink blocks, and Stateflow® charts that are useful for
real-time or embedded applications. The generated source code and executable
programs for floating-point algorithms match the functional behavior of
MATLAB code execution and Simulink simulations to high degrees of fidelity.
Using the Fixed-Point Toolbox™orSimulink® Fixed Point™ product, you can
generate fixed-point code that provides a bit-wise accurate match to model
execution and simulation results. Such broad support and high degrees
of accuracy are possible because code generation is tightly integrated with
the MATLAB and Simulink execution and simulation engines. The built-in
accelerated simulation modes in Simulink use code generation technology.

Code generation technology and related products provide tooling that you can
apply to the V-model for system development. The V-model is a representation
of system development that highlights verification and validation steps in
the development process. For more information about the V-model and how
MathWorks code generation technology and related products provide tooling
that you can apply to the process, see “V-Model for System Development”.

1-3

http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/fixed/
http://www.mathworks.com/products/simfixed/


1 Product Overview

Code Generation Extensions
The Embedded Coder product extends the MATLAB Coder and Simulink
Coder products with features that are important for embedded software
development. Using the Embedded Coder product, you can generate code that
has the clarity and efficiency of professional handwritten code. For example,
you can:

• Generate code that is compact and fast, which is essential for real-time
simulators, on-target rapid prototyping boards, microprocessors used in
mass production, and embedded systems.

• Customize the appearance of the generated code.

• Optimize generated code for a specific target environment.

• Integrate existing (legacy) applications, functions, and data.

• Enable tracing, reporting, and testing options that facilitate code
verification activities.

1-4



Target Environments and Applications

Target Environments and Applications

In this section...

“About Target Environments” on page 1-5

“Types of Target Environments Supported By Embedded Coder” on page 1-5

“Applications of Supported Target Environments” on page 1-8

About Target Environments
In addition to generating source code, the code generator produces make or
project files to build an executable program for a specific target environment.
The generated make or project files are optional. If you prefer, you can
build an executable for the generated source files by using an existing
target build environment, such as a third-party integrated development
environment (IDE). Applications of generated code range from calling a few
exported C or C++ functions on a host computer to generating a complete
executable program using a custom build process, for custom hardware, in an
environment completely separate from the host computer running MATLAB
and Simulink.

The code generator provides built-in system target files that generate, build,
and execute code for specific target environments. These system target files
offer varying degrees of support for interacting with the generated code to
log data, tune parameters, and experiment with or without Simulink as the
external interface to your generated code.

Types of Target Environments Supported By
Embedded Coder
Before you select a system target file, identify the target environment on
which you expect to execute your generated code. The most common target
environments include environments listed in the following table.

1-5



1 Product Overview

Target
Environment

Description

Host computer The same computer that runs MATLAB and Simulink. Typically, a host
computer is a PC or UNIX®1 environment that uses a non-real-time
operating system, such as Microsoft® Windows® or Linux®2. Non-real-time
(general purpose) operating systems are nondeterministic. For example,
those operating systems might suspend code execution to run an operating
system service and then, after providing the service, continue code
execution. Therefore, the executable for your generated code might run
faster or slower than the sample rates that you specified in your model.

Real-time
simulator

A different computer than the host computer. A real-time simulator can
be a PC or UNIX environment that uses a real-time operating system
(RTOS), such as:

• xPC Target™ system

• A real-time Linux system

• A Versa Module Eurocard (VME) chassis with PowerPC® processors
running a commercial RTOS, such as VxWorks® from Wind River®

Systems

The generated code runs in real time. The exact nature of execution varies
based on the particular behavior of the system hardware and RTOS.

Typically, a real-time simulator connects to a host computer for data
logging, interactive parameter tuning, and Monte Carlo batch execution
studies.

Embedded
microprocessor

A computer that you eventually disconnect from a host computer and run as
a standalone computer as part of an electronics-based product. Embedded
microprocessors range in price and performance, from high-end digital
signal processors (DSPs) to process communication signals to inexpensive
8-bit fixed-point microcontrollers in mass production (for example, electronic
parts produced in the millions of units). Embedded microprocessors can:

• Use a full-featured RTOS

1. UNIX® is a registered trademark of The Open Group in the United States and other
countries.

2. Linux® is a registered trademark of Linus Torvalds.

1-6

http://en.wikipedia.org/wiki/RTOS
http://en.wikipedia.org/wiki/RTOS
http://www.mathworks.com/products/xpctarget/


Target Environments and Applications

Target
Environment

Description

• Be driven by basic interrupts

• Use rate monotonic scheduling provided with code generation

A target environment can:

• Have single- or multiple-core CPUs

• Be a standalone computer or communicate as part of a computer network

In addition, you can deploy different parts of a Simulink model on different
target environments. For example, it is common to separate the component
(algorithm or controller) portion of a model from the environment (or plant).
Using Simulink to model an entire system (plant and controller) is often
referred to as closed-loop simulation and can provide many benefits, such
as early verification of a component.

The following figure shows example target environments for code generated
for a model.

Co
de

ge
ne

ra
tio

n

Algorithm model

Host
executable

System model

Host computer(s)

Embedded
microprocessor

Real-time
simulator

Environment model

Co
de

ge
ne

ra
tio

n

Co
de

ge
ne

ra
tio

n

1-7

http://en.wikipedia.org/wiki/Rate-monotonic_scheduling


1 Product Overview

Applications of Supported Target Environments
The following table lists several ways that you can apply code generation
technology in the context of the different target environments.

Application Description

Host Computer

Accelerated simulation You apply techniques to speed up the execution of model
simulation in the context of the MATLAB and Simulink
environments. Accelerated simulations are especially
useful when run time is long compared to the time
associated with compilation and checking whether the
target is up to date.

Rapid simulation You execute code generated for a model in nonreal time
on the host computer, but outside the context of the
MATLAB and Simulink environments.

System simulation You integrate components into a larger system. You
provide generated source code and related dependencies
for building a system in another environment or in
a host-based shared library to which other code can
dynamically link.

Model intellectual property protection You generate a Simulink shareable object library for a
model or subsystem for use by a third-party vendor in
another Simulink simulation environment.

Real-Time Simulator

Rapid prototyping You generate, deploy, and tune code on a real-time
simulator connected to the system hardware (for
example, physical plant or vehicle) being controlled.
This design step is crucial for validating whether a
component can control the physical system.

System simulation You integrate generated source code and dependencies
for components into a larger system that is built in
another environment. You can use shared library files
for intellectual property protection.

1-8



Target Environments and Applications

Application Description

On-target rapid prototyping You generate code for a detailed design that you can
run in real time on an embedded microprocessor while
tuning parameters and monitoring real-time data. This
design step allows you to assess, interact with, and
optimize code, using embedded compilers and hardware.

Embedded Microprocessor

Production code generation From a model, you generate code that is optimized
for speed, memory usage, simplicity, and possibly,
compliance with industry standards and guidelines.

“SIL and PIL Simulation” You execute generated code with your plant model
within Simulink to verify successful conversion of
the model to code. You might change the code to
emulate target word size behavior and verify numerical
results expected when the code runs on an embedded
microprocessor. Or, you might use actual target word
sizes and just test production code behavior.

“SIL and PIL Simulation” You test an object code component with a plant
or environment model in an open- or closed-loop
simulation to verify successful model-to-code conversion,
cross-compilation, and software integration.

Hardware-in-the-loop (HIL) testing You verify an embedded system or embedded computing
unit (ECU), using a real-time target environment.

1-9



1 Product Overview

Prerequisite Knowledge

In this section...

“MATLAB Users” on page 1-10

“Simulink Users” on page 1-10

MATLAB Users
Be familiar with:

• “MATLAB Coder”

• “Code Generation from MATLAB”

• MATLAB Function block

If you are familiar with C language constructs and want to learn how to map
commonly used C constructs to code generated from MATLAB program design
patterns, see “Patterns for C Code” in the Embedded Coder documentation.

Simulink Users
Be familiar with:

• Simulink and Stateflow software to create models or state machines as
block diagrams, running such simulations in Simulink, and interpreting
output in the MATLAB workspace.

• Generating code and building executable programs from Simulink models.

• High-level programming language concepts applied to embedded, real-time
systems.

While you do not need to program in C or other programming languages
to create, test, and deploy embedded systems, using Embedded Coder
software, successful emulation and deployment of embedded systems requires
familiarity with parameters and design constraints. The Embedded Coder
documentation assumes you have a basic understanding of real-time and
embedded system concepts, terminology, and environments.

1-10



Prerequisite Knowledge

If you have not done so, you should study:

• The tutorials in the Simulink Coder Getting Started Guide. The tutorials
provide hands-on experience in configuring models for code generation and
generating code, setting up a data interface, and integrating external code.

• “Model Architecture and Design” and “Scheduling” in the Simulink Coder
documentation. These sections give a general overview of the architecture
and execution of generated code.

If you are familiar with C language constructs and want to learn about how
to map commonly used C constructs to code generated from model design
patterns that include Simulink blocks, Stateflow charts, and MATLAB
function blocks, see “Patterns for C Code”.

1-11



1 Product Overview

Algorithm Development Workflows
You can use MathWorks code generation technology to generate standalone C
or C++ source code for embedded systems:

• By developing MATLAB algorithms with Code Generation from MATLAB
and then generating C/C++ code with the “MATLAB Coder” and Embedded
Coder products

• By developing Simulink models and Stateflow charts and then generating
C/C++ code with the “Simulink Coder” and Embedded Coder products

• By integrating MATLAB code into Simulink models, using Code Generation
from MATLAB and the Simulink MATLAB Function block, and then
generating C/C++ code with the “Simulink Coder” and Embedded Coder
products

The following figure shows the design and deployment environment
options. Although not shown in the figure, other products that support code
generation, such as Stateflow software, are available.

1-12



Algorithm Development Workflows

�����
��	
������

���������������
�������	
��

��	
��

��	
����������
����

�����
��������������

��������

��	
��
�����

��������
�����

��������
���

�����������
 !"���������

"#���������������
$�����������������%��������&

The following table summarizes how to generate C or C++ code for each of the
approaches and identifies where you can find more information.

1-13



1 Product Overview

If you develop
algorithms using...

You generate code by... For more information, see...

Code generation from
MATLAB

Using MATLAB Coder projects

Entering the function codegen
in the MATLAB Command
Window

“Workflow Overview” in the
MATLAB Coder documentation.

Simulink and Stateflow Configuring and initiating code
generation for your model or
subsystem with the Simulink
Configuration Parameters
dialog.

“Simulink and Stateflow
Model” in the Simulink Coder
documentation

Code generation from
MATLAB and Simulink

Including MATLAB code in
Simulink models or subsystems
by using the MATLAB Function
block.

To use this block, you can do
one of the following:

• Copy your code into the block.

• Call your code from the block
by referencing the files on the
MATLAB path.

“Code Generation from
MATLAB” documentation

MATLAB Function block in the
Simulink documentation

To use MATLAB code and Simulink models for a Model-Based Design project:

• Start by using MATLAB to develop an algorithm for research and early
development.

• Later want to integrate the algorithm into a graphical model for system
deployment and verification.

Benefits of this approach include:

• Richer system simulation environment

• Ability to verify the MATLAB code

1-14



Algorithm Development Workflows

• Simulink Coder and Embedded Coder C/C++ code generation for the model
and MATLAB code

If you are familiar with C language constructs and want to learn about how
to map commonly used C constructs to code generated from model design
patterns that include Simulink blocks, Stateflow charts, and MATLAB
functions, see “Patterns for C Code” in the Embedded Coder documentation.

1-15



1 Product Overview

1-16



2

MATLAB Tutorials

• “About the Tutorials” on page 2-2

• “Controlling C Code Style” on page 2-4

• “Generating Reentrant C Code from MATLAB Code” on page 2-9

• “Tracing Between Generated C Code and MATLAB Code” on page 2-18



2 MATLAB® Tutorials

About the Tutorials

In this section...

“About MATLAB® Coder” on page 2-2

“How Embedded Coder Works With MATLAB® Coder” on page 2-2

“Prerequisites” on page 2-3

“Setting Up Tutorial Files” on page 2-3

About MATLAB Coder
MATLAB Coder generates standalone C and C++ from MATLAB code. The
generated source code is portable and readable. MATLAB Coder supports
a subset of core MATLAB language features, including program control
constructs, functions, and matrix operations. It can generate MEX functions
that let you accelerate computationally intensive portions of MATLAB code
and verify the behavior of the generated code.

How Embedded Coder Works With MATLAB Coder
The Embedded Coder product extends the MATLAB Coder product with
features that are important for embedded software development. Using the
Embedded Coder add-on product, you can generate code that has the clarity
and efficiency of professional handwritten code. For example, you can:

• Generate code that is compact and fast, which is essential for real-time
simulators, on-target rapid prototyping boards, microprocessors used in
mass production, and embedded systems

• Customize the appearance of the generated code

• Optimize the generated code for a specific target environment

• Enable tracing options that help you to verify the generated code

• Generate reusable, reentrant code

2-2



About the Tutorials

Prerequisites
To complete these tutorials, you must install the following products:

• MATLAB

• MATLAB Coder

• Embedded Coder

• C compiler

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

You must set up the C compiler before generating C code. See “Setting Up the
C/C++ Compiler” in the MATLAB Coder documentation.

For instructions on installing MathWorks products, see the MATLAB
installation documentation for your platform. If you have installed MATLAB
and want to check which other MathWorks products are installed, in the
MATLAB Command Window, enter ver .

Setting Up Tutorial Files
The tutorial files are available in the following folder:
matlabroot\toolbox\ecoder\examples. To run the tutorials,
copy these files to a local folder. Each tutorial provides instructions about
which files to copy and how to copy them.

2-3



2 MATLAB® Tutorials

Controlling C Code Style

In this section...

“About This Tutorial” on page 2-4

“Copying Files Locally” on page 2-5

“Setting Up the MATLAB® Coder Project” on page 2-5

“Configuring Build Parameters” on page 2-6

“Generating the C Code” on page 2-7

“Viewing the Generated C Code” on page 2-7

“Key Points to Remember” on page 2-8

“Learn More” on page 2-8

About This Tutorial

Learning Objectives
This tutorial shows you how to:

• Generate code for if-elseif-else decision logic as switch-case
statements.

• Automatically generate C code from your MATLAB code using MATLAB
Coder.

• Configure code generation configuration parameters in the MATLAB Coder
project.

• Generate a code generation report that you can use to view and debug
your MATLAB code.

Prerequisites
To complete this tutorial, install the required products and set up your C
compiler as described in “Prerequisites” on page 2-3.

2-4



Controlling C Code Style

Required Files

Type Name Description

Function code test_code_style.m MATLAB example that
uses if-elseif-else .

To run the tutorial, copy this file to a local folder. For instructions, see
“Copying Files Locally” on page 2-5.

Copying Files Locally
Copy the tutorial files to a local working folder.

1 Create a local working folder, for example, c:\ecoder\work.

2 Change to the matlabroot\toolbox\ecoder\examples folder. At the
MATLAB command line, enter:

cd(fullfile(docroot, 'toolbox', 'ecoder', 'examples'))

3 Copy the file test_code_style.m to your local working folder.

Your work folder now contains the file you need to complete this tutorial.

Setting Up the MATLAB Coder Project

1 Set your MATLAB current folder to the work folder that contains the file
for this tutorial. At the MATLAB command line, enter:

cd work

where work is the full path of the work folder containing your files.

2 At the MATLAB command line, enter

coder -new code_style.prj

By default, the project opens in the MATLAB workspace on the right side.

2-5



2 MATLAB® Tutorials

3 On the project Overview tab, click the Add files link and browse to the
file test_code_style.m and then click OK to add the file to the project.

4 Define the type of input x.

Why Specify an Input Definition?

Because C and C++ are statically-typed languages, MATLAB Coder must
determine the properties of all variables in the MATLAB files at code
generation time. For more information, see “Primary Function Input
Specification” in the MATLAB Coder documentation.

On the Overview tab, select the input parameter x and then click the
Actions icon to the right of this parameter to open the context menu.

5 From the menu, select Define Type.

6 In the Define Type dialog box, set Class to int16. Click OK.

Note The Convert if-elseif-else patterns to switch-case
statements optimization works only for integer and enumerated type
inputs.

Configuring Build Parameters

1 In the MATLAB Coder project, click the Build tab.

2 On the Build tab, set the Output type to C/C++ Static Library.

3 On the Build tab, click the More settings link to view the project settings.

4 In the Project Settings dialog box, click the Code Style tab.

5 On the Code Style tab, select Convert if-elseif-else patterns to
switch-case statements.

6 On the Report tab, verify that Always create a code generation report
is selected and then close the dialog box.

2-6



Controlling C Code Style

Generating the C Code
On the Build tab, click the Build button.

The Build progress dialog box opens. When the build is complete, MATLAB
Coder generates a C library, test_code_style.lib, and C code in the
/codegen/lib/test_code_style subfolder. Because you selected report
generation, MATLAB Coder provides a link to the report on the Results tab.

Viewing the Generated C Code
MATLAB Coder generates C code in the file test_code_style.c.

To view the generated code:

1 On the Build tab Results pane, click the View report link to open the
code generation report.

2 In the report, click the C code tab.

3 On this tab, click the test_code_style.c link.

MATLAB Coder converts the if-elseif-else pattern to the following
switch-case statements:

switch (x) {
case 1:
y = 1.0;
break;

case 2:
y = 2.0;
break;

case 3:
y = 3.0;
break;

default:
y = 4.0;
break;

2-7



2 MATLAB® Tutorials

}

Key Points to Remember

• Use the More settings option on the MATLAB Coder project Build tab
to open the Project Settings dialog box where you can configure code
generation options.

• Use the View Report option on the MATLAB Coder project Build tab to
open the code generation report.

Learn More

To... See...

Learn how to create and set up a MATLAB
Coder project

“Setting Up a MATLAB Coder Project” in the
MATLAB Coder documentation.

Learn how to generate C/C++ code from
MATLAB code at the command line

codegen in the MATLAB Coder documentation.

2-8



Generating Reentrant C Code from MATLAB® Code

Generating Reentrant C Code from MATLAB Code

In this section...

“About This Tutorial” on page 2-9

“Copying Files Locally” on page 2-10

“About the Example” on page 2-11

“Providing a main Function” on page 2-12

“Configuring Build Parameters” on page 2-15

“Generating the C Code” on page 2-15

“Viewing the Generated C Code” on page 2-15

“Running the Code” on page 2-16

“Key Points to Remember” on page 2-17

“Learn More” on page 2-17

About This Tutorial

Learning Objectives
This tutorial shows you how to:

• Generate reentrant code from MATLAB code that uses no persistent or
global data

Note This example runs on Windows only.

• Automatically generate C code from your MATLAB code.

• Define function input properties at the command line.

• Specify code generation properties.

• Generate a code generation report that you can use to view and debug
your MATLAB code.

2-9



2 MATLAB® Tutorials

Prerequisites
To complete this tutorial, install the required products and set up your C
compiler as described in “Prerequisites” on page 2-3

Required Files

Type Name Description

Function code matrix_exp.m MATLAB Function
that computes matrix
exponential of the input
matrix using Taylor
series and returns the
computed output.

C main function main.c Calls the reentrant
code.

To run the tutorial, copy these files to a local folder. For instructions, see
“Copying Files Locally” on page 2-10.

Copying Files Locally
Copy the tutorial files to a local working folder.

1 Create a local working folder, for example, c:\ecoder\work.

2 Change to the matlabroot\toolbox\ecoder\examples folder. At the
MATLAB command line, enter:

cd(fullfile(docroot, 'toolbox', 'ecoder', 'examples'))

3 Copy the reentrant_win folder to your local working folder.

Your work folder now contains the files you need to complete this tutorial.

4 Set your MATLAB current folder to the work folder that contains your files
for this tutorial. At the MATLAB command line, enter:

cd work

where work is the full path of the work folder containing your files.

2-10



Generating Reentrant C Code from MATLAB® Code

About the Example
This example requires libraries that are specific to the Microsoft Windows
operating system and, therefore, runs only on Windows platforms. It is a
simple, multithreaded example that uses no persistent or global data. Two
threads call the MATLAB function matrix_exp with different sets of input
data.

Contents of matrix_exp.m

function Y = matrix_exp(X) %#codegen

%

% The function matrix_exp computes matrix exponential of

% the input matrix using Taylor series and returns the

% computed output.

E = zeros(size(X));

F = eye(size(X));

k = 1;

while norm(E+F-E,1) > 0

E = E + F;

F = X*F/k;

k = k+1;

end

Y = E;

When you generate reusable, reentrant code, codegen supports dynamic
allocation of function variables that are too large for the stack, as well
as persistent and global variables. codegen generates a header file,
primary_function_name_types.h, which you must include when using the
generated code. This header file contains the following structures:

• primary_function_nameStackData

Contains the user allocated memory. You must pass a pointer to this
structure as the first parameter to all functions that use it either directly,
because the function uses a field in the structure, or indirectly, because the
function passes the structure to a called function.

2-11



2 MATLAB® Tutorials

If the algorithm uses persistent or global data, the
primary_function_nameStackData structure also contains a
pointer to the primary_function_namePersistentData structure.
Including this pointer means that you have to pass only one parameter to
each calling function.

• primary_function_namePersistentData

If your algorithm uses persistent or global variables, codegen provides a
separate structure for them and adds a pointer to this structure to the
memory allocation structure. Having a separate structure for persistent
and global variables allows you to allocate memory for these variables
once and share them with all threads if desired. However, if there is no
communication between threads, you can choose to allocate memory for
these variables per thread or per application.

Providing a main Function
To call the reentrant code, you must provide a main function that:

• Includes the generated header file matrix_exp.h. This file includes the
generated header file, matrix_exp_types.h.

• For each thread, allocates memory for stack data.

• Calls the matrix_exp_initialize housekeeping function. For more
information, see “Calling Initialize and Terminate Functions” in the
MATLAB Coder documentation.

• Calls matrix_exp.

• Calls matrix_exp_terminate.

• Frees the memory used for stack data.

2-12



Generating Reentrant C Code from MATLAB® Code

Contents of main.c

#include <stdio.h>

#include <stdlib.h>

#include <windows.h>

#include "matrix_exp.h"

#include "matrix_exp_initialize.h"

#include "matrix_exp_terminate.h"

#include "rtwtypes.h"

#define NUMELEMENTS (160*160)

typedef struct {

real_T in[NUMELEMENTS];

real_T out[NUMELEMENTS];

matrix_expStackData* spillData;

} IODATA;

/* The thread_function calls the matrix_exp function written in MATLAB */

DWORD WINAPI thread_function(PVOID dummyPtr) {

IODATA *myIOData = (IODATA*)dummyPtr;

matrix_exp_initialize();

matrix_exp(myIOData->spillData, myIOData->in, myIOData->out);

matrix_exp_terminate();

return 0;

}

void main() {

HANDLE thread1, thread2;

IODATA data1;

IODATA data2;

int32_T i;

/*Initializing data for passing to the 2 threads*/

matrix_expStackData* sd1 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

matrix_expStackData* sd2 = (matrix_expStackData*)calloc(1,sizeof(matrix_expStackData));

data1.spillData = sd1;

data2.spillData = sd2;

2-13



2 MATLAB® Tutorials

for (i=0;i<NUMELEMENTS;i++) {

data1.in[i] = 1;

data1.out[i] = 0;

data2.in[i] = 1.1;

data2.out[i] = 0;

}

/*Initializing the 2 threads and passing appropriate data to the thread functions*/

printf("Starting thread 1...\n");

thread1 = CreateThread(NULL , 0, thread_function, (PVOID) &data1, 0, NULL);

if (thread1 == NULL){

perror( "Thread 1 creation failed.");

exit(EXIT_FAILURE);

}

printf("Starting thread 2...\n");

thread2 = CreateThread(NULL, 0, thread_function, (PVOID) &data2, 0, NULL);

if (thread2 == NULL){

perror( "Thread 2 creation failed.");

exit(EXIT_FAILURE);

}

/*Wait for both the threads to finish execution*/

if (WaitForSingleObject(thread1, INFINITE) != WAIT_OBJECT_0){

perror( "Thread 1 join failed.");

exit(EXIT_FAILURE);

}

if (WaitForSingleObject(thread2, INFINITE) != WAIT_OBJECT_0){

perror( "Thread 2 join failed.");

exit(EXIT_FAILURE);

}

free(sd1);

free(sd2);

printf("Finished Execution!\n");

exit(EXIT_SUCCESS);

}

2-14



Generating Reentrant C Code from MATLAB® Code

Configuring Build Parameters
You enable generation of reentrant code using a code generation configuration
object.

1 Create a configuration object.

e = coder.config('exe', 'ecoder', true);

This command creates a coder.EmbeddedCodeConfig object which
contains all the configuration parameters that the codegen function
needs to generate standalone C/C++ static libraries and executables for
an embedded target.

2 Enable reentrant code generation.

e.MultiInstanceCode = true;

Generating the C Code
Call the codegen function to generate C code, with the following options:

• -config to pass in the code generation configuration object e.

• main.c to include this file in the compilation.

• -report to create a code generation report.

• -args to specify an example input with the class, size, and complexity.

codegen -config e main.c -report matrix_exp.m -args ones(160,160)

codegen generates a C executable, matrix_exp.exe, in the current folder and
C code in the /codegen/exe/matrix_exp subfolder. Because you selected
report generation, codegen provides a link to the report.

Viewing the Generated C Code
codegen generates a header file matrix_exp_types.h, which defines the
matrix_expStackData global structure. This structure contains local
variables that are too large to fit on the stack.

To view this header file:

2-15



2 MATLAB® Tutorials

1 Click the View report link to open the code generation report.

2 In the report, click the C code tab.

3 On this tab, click the link to matrix_exp_types.h.

/*

* matrix_exp_types.h

*

* MATLAB Coder code generation for function 'matrix_exp'

*/

#ifndef __MATRIX_EXP_TYPES_H__

#define __MATRIX_EXP_TYPES_H__

/* Type Definitions */

typedef struct {

struct {

real_T F[25600];

real_T Y[25600];

} f0;

} matrix_expStackData;

#endif

/* End of code generation (matrix_exp_types.h) */

Running the Code
Call the code, first verifying that the example is running on Windows
platforms.

% This example can only be run on Windows platforms

if ~ispc

error('This example requires Windows-specific libraries and can only be run on

Windows.');

end

system('matrix_exp.exe')

The executable runs and reports successful completion.

2-16



Generating Reentrant C Code from MATLAB® Code

Key Points to Remember

• Create a main function that

- Includes the generated header file, primary_function_name_types.h.
This file defines the primary_function_nameStackData global
structure. This structure contains local variables that are too large to
fit on the stack.

- For each thread, allocates memory for stack data.

- Calls primary_function_name_initialize .

- Calls primary_function_name.

- Calls primary_function_name_terminate.

- Frees the memory used for stack data.

• Use the -config option to pass the code generation configuration object to
the codegen function.

• Use the -args option to specify input parameters at the command line.

• Use the -report option to create a code generation report.

Learn More

To... See...

Learn more about the generated code API “Generated Code API”

Call reentrant code with no persistent or global
data on UNIX

“Example: Calling Reentrant Code with No
Persistent or Global Data (UNIX Only)”

Call reentrant code with persistent data on
Windows

“Example: Calling Reentrant Code —
Multithreaded with Persistent Data (Windows
Only)”

Call reentrant code with persistent data on
UNIX

“Example: Calling Reentrant Code —
Multithreaded with Persistent Data (UNIX
Only)”

2-17



2 MATLAB® Tutorials

Tracing Between Generated C Code and MATLAB Code

In this section...

“About This Tutorial” on page 2-18

“Copying Files Locally” on page 2-19

“Configuring Build Parameters” on page 2-20

“Generating the C Code” on page 2-20

“Viewing the Generated C Code” on page 2-20

“Tracing Back to the Source MATLAB Code” on page 2-21

“Key Points to Remember” on page 2-21

“Learn More” on page 2-22

About This Tutorial

Learning Objectives
This tutorial shows you how to:

• Generate code that includes the MATLAB source code as comments.

• Include the function help text in the function header of the generated code.

• Use the code generation report to trace from the generated code to the
source code.

Prerequisites
To complete this tutorial, install the required products and set up your C
compiler as described in “Prerequisites” on page 2-3

2-18



Tracing Between Generated C Code and MATLAB Code

Required File

Type Name Description

Function code polar2cartesian.m Simple MATLAB
function that contains a
comment

To run the tutorial, copy this file to a local folder. For instructions, see
“Copying Files Locally” on page 2-19.

Copying Files Locally
Copy the tutorial file to a local working folder.

1 Create a local working folder, for example, c:\ecoder\work.

2 Change to the matlabroot\toolbox\ecoder\examples folder. At the
MATLAB command line, enter:

cd(fullfile(docroot, 'toolbox', 'ecoder', 'examples'))

3 Copy the polar2cartesian.m file to your local working folder.

Your work folder now contains the file you need to complete this tutorial.

4 Set your MATLAB current folder to the work folder that contains the file
for this tutorial. At the MATLAB command line, enter:

cd work

where work is the full path of the work folder containing your files.

Contents of polar2cartesian.m

function [x y] = polar2cartesian(r,theta)
%#codegen
% Convert polar to Cartesian
x = r * cos(theta);
y = r * sin(theta);

2-19



2 MATLAB® Tutorials

Configuring Build Parameters

1 Create a coder.EmbeddedCodeConfig code generation configuration object.

cfg = coder.config('lib', 'ecoder', true);

2 Enable the MATLABSourceCode option to include MATLAB source code as
comments in the generated code and the function signature in the function
banner.

cfg.MATLABSourceComments = true;

3 Enable the MATLBFcnDesc option to include the function help text in the
function banner.

cfg.MATLABFcnDesc = true;

Generating the C Code
Call the codegen function to generate C code, with the following options:

• -config to pass in the code generation configuration object cfg.

• -report to create a code generation report.

codegen -config cfg -report polar2cartesian

codegen generates a C library, polar2cartesian.lib, in the current folder
and C code in the /codegen/lib/polar2cartesian subfolder. Because you
selected report generation, codegen provides a link to the report.

Viewing the Generated C Code
codegen generates C code in the file polar2cartesian.c.

To view the generated code:

1 Click the View report link to open the code generation report.

2 In the report, click the C code tab.

3 On this tab, click the straightline.c link.

2-20



Tracing Between Generated C Code and MATLAB Code

Examine the generated code. The function help text Convert polar to
Cartesian appears in the function header. The source code appears as
comments in the generated code.

/*
* function [x y] = polar2cartesian(r,theta)
* Convert polar to Cartesian
*/
void straightline(real_T r, real_T theta, ...

real_T *x, real_T *y)
{

/* 'polar2cartesian:4' x = r * cos(theta); */
*x = r * cos(theta);
/* 'polar2cartesian:5' y = r * sin(theta); */
*y = r * sin(theta);

}

Tracing Back to the Source MATLAB Code
To trace back to the source code, click any traceability tag.

For example, to view the MATLAB code for the C code, x = r * cos(theta);,
click the 'polar2cartesian:4' traceability tag.

The source code file polar2cartesian.m opens in the MATLAB editor with
line 4 highlighted.

Key Points to Remember

• Create a coder.EmbeddedCodeConfig configuration object and enable the:

- MATLABSourceCode option to include MATLAB source code as comments
in the generated code and the function signature in the function banner

- MATLBFcnDesc option to include the function help text in the function
banner

• Use the -config option to pass the code generation configuration object to
the codegen function.

• Use the -report option to create a code generation report.

2-21



2 MATLAB® Tutorials

Learn More

To... See...

Learn more about code traceability “About Code Traceability” in the MATLAB
Coder documentation.

Learn about the location of comments in the
generated code

“Location of Comments in Generated Code” in
the MATLAB Coder documentation.

See traceability limitations “Traceability Limitations” in the MATLAB
Coder documentation.

2-22



3

Simulink Tutorials

• “About the Tutorials” on page 3-2

• “Configuring Model and Generating Code” on page 3-5

• “Controlling Appearance of Generated Code” on page 3-16

• “Configuring Data Interface” on page 3-22

• “Partitioning and Exporting Functions” on page 3-30

• “Integrating Generated Code into External Environment” on page 3-44

• “Verifying Generated Code” on page 3-53

• “Evaluating Generated Code” on page 3-63



3 Simulink® Tutorials

About the Tutorials

In this section...

“Introduction” on page 3-2

“Prerequisites” on page 3-3

“Third-Party Software” on page 3-3

“Required Files” on page 3-3

Introduction
The following tutorials are based on the throttle controller example model
described in “Getting Familiar with the Example Model and Testing
Environment” in the Simulink Coder documentation. The tutorials will help
you get started with using Embedded Coder to generate code from Simulink
models and subsystems for embedded system applications.

• “Configuring Model and Generating Code” on page 3-5

• “Configuring Data Interface” on page 3-22

• “Controlling Appearance of Generated Code” on page 3-16

• “Partitioning and Exporting Functions” on page 3-30

• “Integrating Generated Code into External Environment” on page 3-44

• “Verifying Generated Code” on page 3-53

• “Evaluating Generated Code” on page 3-63

Each tutorial focuses on a specific aspect of code generation or integration for
embedded systems and is self-contained. Use only the tutorials that apply to
your needs.

Each tutorial uses a unique Simulink demo model and data set. As you
proceed through the tutorials, you save each model after you have worked
on it, preserving your modifications to the model and model data for future
examination. To prevent any errors from carrying over to the next tutorial,
begin the next tutorial by opening a new model and loading new data.

3-2



About the Tutorials

Prerequisites
You must know how to:

• MathWorks products

- Read, write, and apply MATLAB scripts

- Create Simulink models

- Include Stateflow charts in Simulink models

- Run Simulink simulations and evaluate the results

• C programming

- Use C data types and storage classes

- Use function prototypes and call functions

- Compile a C function

• Metrics for evaluating embedded software

- Evaluate code readability

- Evaluate RAM/ROM usage

- Evaluate system execution performance

Third-Party Software
To compile and build generated code for the integration and testing tutorials,
you can use an Integrated Development Environment (IDE) or equivalent
tools such as command-line compilers and makefiles. Appendix A, Appendix
A, “Installing and Using an IDE for the Integration and Testing Tutorials”
describes how to install and use the Eclipse™ IDE for C/C++ Developers and
the Cygwin™ debugger for integrating and testing your generated code.

Required Files
Each tutorial uses a unique example model file and data set.

• Before you use each example file, place a copy in a in a writable location on
your MATLAB path. Proceed through the tutorials from this location.

• As you proceed through a tutorial, save your changes for future
examination.

3-3



3 Simulink® Tutorials

• To avoid potentially introducing errors into the next tutorial, begin each
tutorial by opening a new model and loading new data.

3-4



Configuring Model and Generating Code

Configuring Model and Generating Code

In this section...

“About this Tutorial” on page 3-5

“Configuring Model for Code Generation” on page 3-6

“Checking Model for Adverse Conditions and Settings” on page 3-11

“Generating Code” on page 3-12

“Reviewing Generated Code” on page 3-13

“Key Points” on page 3-14

“Learn More” on page 3-15

About this Tutorial

Learning Objectives

• Configure a model for generating code for an embedded system.

• Apply model-checking tools to discover conditions and configuration
settings that can result in generation of inaccurate or inefficient code.

• Generate code optimized for an embedded system from a model.

• Locate and identify generated code files.

• Review generated code.

Prerequisites

• Completed “Getting Familiar with the Example Model and Testing
Environment” and “Configuring the Model and Generating Code” in the
Simulink Coder documentation

Required File
rtwdemo_throttlecntrl_configert.mdl

3-5



3 Simulink® Tutorials

Configuring Model for Code Generation
Model configuration parameters determine the method for generating the
code and the resulting format. When generating code for an embedded
system, model configuration can be extremely complex. At a minimum, in
addition to the solver type and system target file (STF), configure the model
for the hardware implementation and optimizations that align with the
system application.

1 Open rtwdemo_throttlecntrl_configert.mdl. Save a copy as
throttlecntrl_configert.mdl in a writable location on your MATLAB
path.

2 In the Configuration Parameters dialog box, configure the solver. To
generate code, configure the model to use a fixed-step solver. For this
example, make sure that the Type, Solver, and Fixed-step size
parameters are set as described in the following table.

Parameter Setting Effect on Generated
Code

Type Fixed-step Maintains a constant
(fixed) step size, which
is required for code
generation

Solver discrete (no
continuous
states)

Applies a fixed-step
integration technique
for computing the state
derivative of the model

Fixed-step size .001 Sets the base rate; must
be the lowest common
multiple of all rates in the
system

3-6



Configuring Model and Generating Code

3 Open Optimization > Signals and Parameters and select Inline
parameters. When this parameter is set, the code generator optimizes the
code by replacing model parameters with constant values. Unless a model
is still under development, consider using this setting when generating
code for an embedded system.

4 Open the Hardware Implementation pane. Use parameters on this
pane to specify the device type, word size, and byte ordering of the
target hardware. Assume that the throttle controller model targets a
generic 32-bit embedded processor. Set Device type to 32-bit Embedded
Processor.

5 Open the Code Generation > General pane. Set the System target
file parameter to the embedded real-time target file, ert.tlc. The code
generator uses this target file to generate code that is optimized for
embedded system deployment.

The list of Code Generation subpanes expands to include:

• SIL and PIL Verification

3-7



3 Simulink® Tutorials

• Code Style

• Templates

• Code Placement

• Data Type Replacement

• Memory Sections

6 Set code generation parameters based on your application objectives.
Configuring a model to meet specific objectives (requirements) for code
generation can be an extremely complex, time consuming task. The Code
Generation Advisor simplifies this task by allowing you to select and
prioritize one or more of the following objectives:

• Execution efficiency

• ROM efficiency

• RAM efficiency

• MISRA-C:2004 guidelines

• Safety precaution

• Traceability

• Debugging

Each objective includes a set of Code Generation Advisor checks that you
can use to:

• Review the model configuration parameters against the recommended
values of the objectives.

• Verify that the model configuration parameters are set to create code
that meets your model objectives.

Some objectives recommend different parameter settings and include
different checks in the Code Generation Advisor. When objectives conflict,
the priorities of the selected objectives determine which recommendations
and checks the advisor presents.

For this tutorial, configure the model for execution and memory efficiency:

a On the Code Generation pane, click Set objectives. The Set
Objectives dialog box opens.

3-8



Configuring Model and Generating Code

b Select and prioritize categories Execution efficiency, ROM
efficiency, and then RAM efficiency as shown below.

7 Review the model against the selected objectives by using the Code
Generation Advisor.

a On the Code Generation pane, click Check model. A System Selector
dialog box opens.

b In the System Selector dialog box, select throttlecntrl_configert
and click OK.

The Code Generation Advisor dynamically creates and runs a list of
checks based on the selection and prioritization of the objectives. This
task might take a few minutes.

3-9



3 Simulink® Tutorials

c Evaluate the warning condition flagged for the first check in the report,
which reviews configuration parameter settings and recommends values
based on the objectives.

Select the first check and click Modify Parameters to set parameters
to recommended values. Then, click Run This Check to rerun the
check. The warning symbol should disappear.

d Select hardware implementation check, which is the second check
flagged with a warning. This check identifies inconsistencies and
incomplete specification of hardware attributes, which can lead to
inefficient or incorrect code for the target hardware.

Under Recommended Action, the report suggests that you specify byte
ordering and signed integer division rounding for your target hardware.
For this tutorial, assume you are using a target that supports both
big-endian and little-endian byte ordering. Therefore, Byte ordering
can remain Unspecified. However, you should click the Signed
integer division rounding link and set the Signed integer division

3-10



Configuring Model and Generating Code

rounds to parameter to Zero (the most common behavior), and rerun
the check. Note that only the warning for byte ordering remains.

e Select the third check that is flagged as a warning. The warning
concerns arithmetic exceptions for integer division in generated code.
Assume that you verified that your model cannot cause exceptions in
division operations, and as the Code Generation Advisor suggests,
select Optimization > Remove code that protects against division
arithmetic exceptions. Update the model diagram and rerun the
check. The warning should disappear.

f Close the Code Generation Advisor window.
For more information, see “Determining Whether the Model is Configured
for Specified Objectives”.

8 Save the model and the configuration parameter settings as a MATLAB
function.

a In the Model Explorer window, select throttlcngrl_configert in the
left pane.

b Right-click and select Export Active Configuration Set. The Export
Active Configuration Set to File dialog box opens.

c Save the file as throttlecntrlModelErtConfig.m.

For more information, see “Save a Configuration Set” and “Load a Saved
Configuration Set” in the Simulink documentation.

9 Close the Model Explorer. Save and close the model.

Checking Model for Adverse Conditions and Settings
Before generating code for the model, use the Simulink Model Advisor to
check the model for conditions and configuration settings that can result in
inaccurate or inefficient code.

1 Open your copy of the throttle controller model,
throttlecntrl_configert.mdl.

2 Start the Model Advisor.

3-11



3 Simulink® Tutorials

3 In the System Hierarchy dialog box, click throttlecntrl_configert, and
then click OK. It might take a few minutes for the Model Advisor window
to open.

4 Expand By Product and Embedded Coder, enable all checks under
Embedded Coder, click Embedded Coder, and in the right pane, click
Run Selected Checks. The report summary indicates two warnings
remain.

The remaining warnings concern byte ordering and MISRA-C:2004
compliance. Ignore the byte-ordering warning for the reason cited earlier.

5 Evaluate the MISRA conditions using the links in the analysis results,
and then rerun that check.

6 Close the Model Advisor window.

Generating Code

1 Open throttlecntrl_configert.mdl.

2 In the Configuration Parameters dialog box, select Code
Generation > Report > Static code metrics report. This setting
includes the static code metrics report in the HTML code generation
report. The static code metrics report provides metrics on source files,
global variables, and functions.

3 In the Configuration Parameters dialog box, select Code
Generation > Generate code only (if not already selected).

4 Click Generate code and watch the messages that are displayed
in the MATLAB Command Window. The code generator produces
standard C and header files and an HTML code generation report. The
code generator places the files in a build folder, a subfolder named
throttlecntrl_configert_ert_rtw under your current working folder.

3-12



Configuring Model and Generating Code

The subfolder name is the model name ending with the string _ert_rtw.
The resulting code, while computationally efficient, is not yet organized for
integration into a production environment.

Reviewing Generated Code

1 From the generated HTML code generation report or the MATLAB Editor,
open the generated throttlecntrl_configert.c file in the build folder
and review the code. Note the following:

• Identification, version, timestamp, and configuration comments.

• Data definitions.

• Controller code is in one function, throttlecntrl_configert_step.

• Operations of multiple blocks are in one equation.

• Generated data structures (for example,
throttlecntrl_configert_U.pos_rqst) define all data.

• throttlecntrl_configert_initialize and
throttlecntrl_configert_terminate functions contain no code.

2 From the generated HTML code generation report, select the Static Code
Metrics Report in the Contents section. Note the file statistics, size
of the largest global variables, and function call paths that require the
largest stack size.

3 Close the throttle controller model.

Consider examining the following files by clicking the links in the HTML
report, or by exploring other generated files in the build folder.

File Description

throttlecntrl_configert.c C file that contains step and
initialization functions

throttlecntrl_configert_data.c C file that assigns values to
generated data structures

ert_main.c Example main module that
includes a simple scheduler

3-13



3 Simulink® Tutorials

File Description

throttlecntrl_configert.h Header file that defines data
structures

throttlecntrl_configert_private.h Header file that defines data
used only by the generated code

throttlecntrl_configert_types.h Header file that defines the
model data structure

For more information about these and other generated files, see “Code
Modules”.

Key Points

• To generate code for an embedded system, you must at least change the
model configuration to specify:

- A fixed-step solver

- Hardware settings that match the target hardware specifications

- ERT system target format

- Configuration objectives that align with application requirements

• Consider configuring the model with parameter inlining enabled if C code
debugging is not required.

• You can check and modify the configuration of a model to best align with
application objectives by using the Code Generation Advisor.

• You can save a model configuration for future use or for applying it to
another model. Use the Export Active Configuration Set dialog box,
available by right clicking on the model in the Model Explorer.

• Before generating code, consider checking a model with the Model Advisor.

• The code generator places generated files in a subfolder
(throttlecntrl_configert_ert_rtw) of your working folder.

• Review the static code metrics report to check that possible memory usage
is within your requirements.

3-14



Configuring Model and Generating Code

Learn More

•

• “Determining Whether the Model is Configured for Specified Objectives”

• “Application Considerations”

• “Save a Configuration Set” and “Load a Saved Configuration Set” in the
Simulink documentation.

• “Consulting the Model Advisor” in the Simulink documentation.

• Generate a Static Code Metrics Report for Code Reviews

• “Program Building, Interaction, and Debugging”

3-15



3 Simulink® Tutorials

Controlling Appearance of Generated Code

In this section...

“About this Tutorial” on page 3-16

“Customizing Code Comments” on page 3-17

“Customizing Appearance of Identifiers” on page 3-19

“Customizing Code Style” on page 3-20

“Key Points” on page 3-21

“Learn More” on page 3-21

About this Tutorial

Learning Objectives
Control and customize the following aspects of generated code appearance to
optimize the code, simplify maintenance, improve code readability, or comply
with company code conventions and style:

• Comments

• Identifiers (symbols)

• Style (for example, conversion of if-elseif-else patterns to switch-case
statements)

Prerequisites
You are able to:

• Open and modify Simulink models and subsystems

• Set block properties

• Set model configuration parameters

• Read C code

3-16



Controlling Appearance of Generated Code

Required File
rtwdemo_throttlecntrl_codeappearance.mdl

Customizing Code Comments

1 Open rtwdemo_throttlecntrl_codeappearance.mdl. Save a copy as
throttlecntrl_codeappearance.mdl in a writable location on your
MATLAB path.

2 Generate code and examine the comments in the generated file
throttlecntrl_codeappearance.c.

3 Add descriptions to the properties for the three model Inport blocks. For
each block, right-click, select Block properties, and enter the descriptions
listed in the following table.

For Inport Block... Add Description...

pos_rqst Throttle position request input for PI
controller subsystems

fbk_1 Feedback input for PI controller subsystem
PI_ctrl_1

fbk_2 Feedback input for PI controller subsystem
PI_ctrl_2

4 Open the Code Generation > Comments pane of the Configuration
Parameters dialog box and explore the available options.

5 Select the Simulink block descriptions parameter.

6 Generate code and examine the file throttlecntrl_codeappearance.c.
Specifically, compare the following before and after code fragments:

Before

/* Sum: '<S2>/Sum2' incorporates:

* Inport: '<Root>/fbk_1'

* Inport: '<Root>/pos_rqst'

*/

3-17



3 Simulink® Tutorials

rtb_Sum3 = (*pos_rqst) - my_throttlecntrl_codeappearan_U.fbk_1;

.

.

.

/* Sum: '<S3>/Sum2' incorporates:

* Inport: '<Root>/fbk_2'

* Inport: '<Root>/pos_rqst'

*/

rtb_Sum3 = (*pos_rqst) - fbk_2;

After

/* Sum: '<S2>/Sum2' incorporates:

* Inport: '<Root>/fbk_1'

* Inport: '<Root>/pos_rqst'

*

* Block description for '<Root>/fbk_1':

* Feedback input for PI controller subsystem PI_ctrl_1

*

* Block description for '<Root>/pos_rqst':

* Throttle position request input for PI controller subsystems

*/

rtb_Sum3 = (*pos_rqst) - my_throttlecntrl_codeappearan_U.fbk_1;

.

.

.

/* Sum: '<S3>/Sum2' incorporates:

* Inport: '<Root>/fbk_2'

* Inport: '<Root>/pos_rqst'

*

* Block description for '/fbk_2':

* Feedback input for PI controller subsystem PI_ctrl_2

*

* Block description for '<Root>/pos_rqst':

* Throttle position request input for PI controller subsystems

*/

rtb_Sum3 = (*pos_rqst) - fbk_2;

7 Close the code and model files.

3-18



Controlling Appearance of Generated Code

For more information, see “Configuring Code Comments in Embedded System
Code”

Customizing Appearance of Identifiers
The ability to customize identifiers allows for easier integration of code
generated by Embedded Coder with legacy code. It also simplifies compliance
with company specific C coding standards.

1 Open throttlecntrl_codeappearance.mdl.

2 Generate code and examine the identifiers in the generated file
throttlecntrl_codeappearance.c.

3 Open the Code Generation > Symbols pane of the Configuration
Parameters dialog box and explore the available options. For token and
macro details, see the Help for a specific parameter.

4 Change the setting of the Local block output variables parameter to
OutVar_$N$M.

5 Generate code and examine the file throttlecntrl_codeappearance.c.
Specifically, compare the following before and after code fragments:

Before

rtb_Sum3 = throttlecntrl_configert_U.pos_rqst -

throttlecntrl_configert_U.fbk_1;

.

.

.

rtb_Sum3 = throttlecntrl_configert_U.pos_rqst -

throttlecntrl_configert_U.fbk_2;

After

OutVar_Sum3 = throttlecntrl_codeappearance_U.pos_rqst -

throttlecntrl_codeappearance_U.fbk_1;

.

.

.

3-19



3 Simulink® Tutorials

OutVar_Sum3 = throttlecntrl_codeappearance_U.pos_rqst -

throttlecntrl_codeappearance_U.fbk_2;

6 Close the code and model files.

For more information, see “Configuring Generated Identifiers in Embedded
System Code”

Customizing Code Style

1 Open throttlecntrl_codeappearance.mdl.

2 Generate code and examine the style applied to code in the generated file
throttlecntrl_codeappearance.c.

3 Open the Code Generation > Code Style pane of the Configuration
Parameters dialog box and explore the available options.

4 Change the setting of the Parentheses level parameter to Minimum (Rely
on C/C++ operators for precedence).

5 Generate code and examine the file throttlecntrl_codeappearance.c.
Specifically, compare the following before and after code fragments:

Before

throttlecntrl_configert_DWork.Discrete_Time_Integrator1_DSTAT = (((-0.03 *

rt_Lookup((const real_T *)throttlecntrl_configert_ConstP.pooled4, 9,

rtb_Sum3, (const real_T *)throttlecntrl_configert_ConstP.pooled5))

* rtb_Sum3) * 0.001) +

throttlecntrl_configert_DWork.Discrete_Time_Integrator1_DSTAT;

After

throttlecntrl_codeappeara_DWork.Discrete_Time_Integrator1_DSTAT = -0.03 *

rt_Lookup((const real_T *)throttlecntrl_codeappear_ConstP.pooled4, 9,

OutVar_Sum3, (const real_T *)

throttlecntrl_codeappear_ConstP.pooled5) * OutVar_Sum3 * 0.001 +

throttlecntrl_codeappeara_DWork.Discrete_Time_Integrator1_DSTAT;

For more information, see “Controlling Code Style”

3-20



Controlling Appearance of Generated Code

Key Points
Control and customize the following aspects of generated code appearance to
optimize the code, simplify maintenance, improve code readability, or comply
with company code conventions and style:

• Customize aspects of generated code appearance to meet application
requirements.

• You can document generated code specifying a level of code comments
depending on the application objectives.

• You can customize identifiers in generated code, for example, to enhance
readability or comply with company code guidelines or standards.

• Available code style customizations pertain to the parentheses level,
operand order in expressions, condition expressions and patterns, and use
of the extern keyword.

Learn More

• “Configuring Code Comments in Embedded System Code” and “Code
Generation Pane: Comments”

• “Configuring Generated Identifiers in Embedded System Code” and “Code
Generation Pane: Symbols”

• “Controlling Code Style” and “Code Generation Pane: Code Style”

3-21



3 Simulink® Tutorials

Configuring Data Interface

In this section...

“About this Tutorial” on page 3-22

“Creating Data Objects for Named Data in Base Workspace” on page 3-23

“Configuring Data Objects” on page 3-23

“Controlling Placement of Parameter and Constant Data in Generated
Code” on page 3-24

“Including Signal Data Objects in Generated Code” on page 3-26

“Effects of Simulation on Data Typing” on page 3-27

“Viewing Data Objects in Generated Code” on page 3-28

“Saving Base Workspace Data” on page 3-29

“Key Points” on page 3-29

“Learn More” on page 3-29

About this Tutorial

Learning Objectives

• Configure the data interface for code generated from a model.

• Control the name, data type, and data storage class of signals and
parameters in generated code.

• Control the placement of parameter data.

Prerequisites

• Understanding of ways to represent and use data and signals in models.

• Familiarity with representing data constructs as data objects.

• Completed “Configuring the Data Interface” in the Simulink Coder
documentation.

3-22



Configuring Data Interface

• Able to read C code.

Required Files

• rtwdemo_throttlecntrl_dataplacement.mdl

• rtwdemo_throttlecntrl_testharnessert.mdl

Creating Data Objects for Named Data in Base
Workspace
Use the Data Object Wizard to find constructs in the base workspace for
which you can create data objects.

1 Open rtwdemo_throttlecntrl_dataplacement.mdl. Save a copy as
throttlecntrl_dataplacement.mdl in a writable location on your
MATLAB path.

2 In the model window, select Tools > Data Object Wizard. The Data
Object Wizard dialog box opens.

3 In the Data Object Wizard dialog box, click Find to find candidate
constructs. After a few minutes, constructs fbk_1 and pos_cmd_two appear
in the dialog box.

4 Click Check All to select both constructs.

5 Click Apply Package to apply the default Simulink package for the data
objects.

6 Click Create to create the data objects. Constructs fbk_1 and pos_cmd_two
are removed from the dialog box.

7 Close the Data Object Wizard.

8 Open the Model Explorer, click Base Workspace, On the Contents pane,
find the newly created objects fbk_1 and pos_cmd_two.

Configuring Data Objects

1 In the Model Explorer, examine the contents of the base workspace.

3-23



3 Simulink® Tutorials

2 Configure the fbk_1 and pos_cmd_two signals with the following settings.

Signal Data Type Storage Class

fbk_1 double ImportedExtern

pos_cmd_two double ExportedGlobal

3 Close the Model Explorer.

4 Save and close the model.

Controlling Placement of Parameter and Constant
Data in Generated Code
You can control which generated files contain model data definitions and
declarations, for example, to adhere to company standards, by specifying files
on the Code Generation > Code Placement pane of the Configuration
Parameters dialog box.

For this tutorial, define and declare parameters in eval_data.c and
eval_data.h Separating the data declaration and assignment simplifies the
integration of the code into the production environment.

1 Open your copy of the throttle controller model,
throttlecntrl_dataplacement.mdl.

2 In the Configuration Parameters dialog box, open Code
Generation > Code Placement.

3 Set Data definition and Data Declaration to Data defined in single
separate source file.

4 Set Data definition filename and Data declaration filename to
eval_data.c and eval_data.h, respectively.

5 Generate code for the model. When code generation is complete,
eval_data.c and eval_data.h are in the model build folder.

6 Examine the data files.

eval_data.c

3-24



Configuring Data Interface

#include "rtwtypes.h"

#include "throttlecntrl_dataplacement_types.h"

/* Const memory section */

/* Definition for custom storage class: Const */

const real_T I_Gain = -0.03;

const real_T I_InErrMap[9] = { -1.0, -0.5, -0.25, -0.05, 0.0, 0.05, 0.25, 0.5,

1.0 } ;

const real_T I_OutMap[9] = { 1.0, 0.75, 0.6, 0.0, 0.0, 0.0, 0.6, 0.75, 1.0 } ;

const real_T P_Gain = 0.74;

const real_T P_InErrMap[7] = { -1.0, -0.25, -0.01, 0.0, 0.01, 0.25, 1.0 } ;

const real_T P_OutMap[7] = { 1.0, 0.25, 0.0, 0.0, 0.0, 0.25, 1.0 } ;

eval_data.h

#ifndef RTW_HEADER_eval_data_h_

#define RTW_HEADER_eval_data_h_

#include "rtwtypes.h"

#include "throttlecntrl_dataplacement_types.h"

/* Const memory section */

/* Declaration for custom storage class: Const */

extern const real_T I_Gain;

extern const real_T I_InErrMap[9];

extern const real_T I_OutMap[9];

extern const real_T P_Gain;

extern const real_T P_InErrMap[7];

extern const real_T P_OutMap[7];

#endif /* RTW_HEADER_eval_data_h_ */

7 Save and close the code files and model.

For more information, see “Managing Placement of Data Definitions and
Declarations”.

3-25



3 Simulink® Tutorials

Including Signal Data Objects in Generated Code

1 Open your copy of the throttle controller model,
throttlecntrl_dataplacement.mdl.

2 In the Configuration Parameters dialog box, make sure that you select
Optimization > Signals and Parameters > Inline parameters.

3 Enable signal data object pos_cmd_one to appear in the generated code.

a In the model window, right-click the pos_cmd_one signal line and select
Signal Properties. A Signal Properties dialog box opens.

b In the Signal Properties dialog box, make sure that you select Signal
name must resolve to a Simulink signal object.

4 Enable signal object resolution for all signals in the model simultaneously.
In the MATLAB Command Window, enter:

disableimplicitsignalresolution('throttlecntrl_dataplacement')

Messaging in the MATLAB Command Window indicates that the following
signal objects are resolved.

Signal... Used By...

pos_cmd_two PI_ctrl_2/1

error_reset Define_Throt_Param/Constant4/1

max_diff Define_Throt_Param/Constant3/1

fail_safe_pos Define_Throt_Param/Constant/1

fbk_1 fbk_1/1

5 Save and close the model.

3-26



Configuring Data Interface

Effects of Simulation on Data Typing
In the throttlecntrl_dataplacement model, all data types are set to
double. Because Simulink software uses the double data type for simulation,
do not expect changes in the model behavior when you run the generated code.
You can verify this behavior by running the test harness.

Before you run your test harness, update it to include the
throttlecntrl_dataplacement model.

Note The following procedure requires a Stateflow license.

1 Open throttlecntrl_dataplacement.mdl.

2 Open rtwdemo_throttlecntrl_testharnessert.mdl. Save a copy as
throttlecntrl_testharnessert.mdl.

3 In the test harness model, right-click the Unit_Under_Test Model block
and select Model Reference Parameters.

4 SetModel name to throttlecntrl_dataplacement and click OK.

5 Update the test harness model diagram (Edit > Update Diagram).

6 Simulate the test harness.

The resulting plot shows that the difference between the golden and
simulated versions of the model remains zero.

3-27



3 Simulink® Tutorials

7 Save and close the test harness model.

Viewing Data Objects in Generated Code

1 Open your copy of the throttle controller model,
throttlecntrl_dataplacement.

2 Generate code for the model.

3 Examine the code in the generated file, throttlecntrl_dataplacement.c.

The following statement shows a sampling of generated variables for the
model before you converted the data to data objects.

rtb_Sum3 = my_throttlecntrl_dataplacement_U.pos_rqst...

- my_throttlecntrl_dataplacement_U.fbk_1;

3-28



Configuring Data Interface

After creating data objects for signals pos_rqst and fbk_1, the same line of
generated code appears is:

rtb_Sum3 = *pos_rqst - fbk_1;

4 Close the model.

Saving Base Workspace Data
In the base workspace, save the data that exists in the base workspace for
future reference. In the MATLAB Command Window, enter save. Simulink
places the data in the matlab.mat file in the model build folder.

Key Points

• You can declare data in Simulink models and Stateflow charts by using
data objects.

• You can manage (create, view, configure, and so on) base workspace data
from the Model Explorer or in the MATLAB Command Window.

• The Data Object Wizard provides a quick way to create data objects for
constructs such as signals, buses, and parameters.

• You must explicitly configure data objects to appear by name in generated
code.

• Because Simulink software uses the double data type for simulation, if all
data types are set to double for a model, you can expect simulation and
generated code behavior to match.

• Separation of the data from the model provides several benefits.

Learn More

• “Working with Data” in the Simulink documentation

• “Data, Function, and File Definition”

• “Custom Storage Classes” in the Embedded Coder documentation

• “Managing Placement of Data Definitions and Declarations” in the
Embedded Coder documentation

3-29



3 Simulink® Tutorials

Partitioning and Exporting Functions

In this section...

“About this Tutorial” on page 3-30

“Changing Model Architecture to Control Execution Order” on page 3-31

“Controlling Function Location and File Placement in Generated Code”
on page 3-33

“Using Mask to Pass Parameters into Library Subsystem” on page 3-36

“Generating Code for Full Model and Exported Functions” on page 3-38

“Changing Execution Order and Simulation Results” on page 3-40

“Key Points” on page 3-42

“Learn More” on page 3-43

About this Tutorial

Learning Objectives

• Specify function and file names in generated code.

• Exert direct control over the execution order of model components.

• Identify parts of generated code used for integration.

• Generate code for atomic subsystems.

• Know what data you need to execute a generated function.

Prerequisites

• Understand basic model architecture.

• Understand the difference between types of subsystems — see “Systems
and Subsystems” in the Simulink documentation.

• Understand the purpose of function-call subsystems.

• Understand what reentrant code is.

3-30



Partitioning and Exporting Functions

• Familiarity with the Subsystem Parameters dialog box.

• Familiarity with the Mask Parameters dialog box.

• Familiarity with different ways to generate code for subsystems.

• Able to read C code.

Required File

• rtwdemo_throttlecntrl_funcpartition.mdl

• rtwdemo_throttlecntrl_testharnessert.mdl

Changing Model Architecture to Control Execution
Order
To match the behavior of a physical system, you might have to exert direct
control over the execution order of model components. One way of controlling
execution order is to use function-call subsystems and a Stateflow chart that
models the calling functionality of a scheduler.

The example throttle controller model includes virtual subsystems. This
tutorial shows you how to replace the virtual subsystems with function-call
subsystems, and use them to control subsystem execution order.

1 Open rtwdemo_throttlecntrl_funcpartition.mdl. Save a copy as
throttlecntrl_funcpartition.mdl in a writable location on your
MATLAB path.

This version of the throttle controller model includes three function-call
subsystems and a subsystem consisting of a Stateflow chart, which controls
execution order of the other subsystems.

3-31



3 Simulink® Tutorials

2 Examine the function-call subsystems PI_ctrl_1, PI_ctrl_2, and
Pos_Command_Arbitration.

3 Examine the Stateflow chart subsystem Execution_Order_Control. This
subsystem controls the execution order of the function-call subsystems.
Later in the tutorial, you see how changing execution order can change
simulation results.

4 Examine the new Signal Conversion blocks for output ports pos_cmd_one
and pos_cmd_two of the PI controllers. The Contiguous copy setting
for the Output block parameter makes it possible for the PI controller
functions in the generated code to be reentrant.

5 Close the model.

3-32



Partitioning and Exporting Functions

Controlling Function Location and File Placement in
Generated Code
So far, the code generator has produced a model_step function, which
contains all control algorithm code for the throttle controller model. However,
many applications require a greater level of control over the location of
functions in the generated code. By using atomic subsystems, you can instruct
the code generator to partition algorithm code across multiple functions.
You specify the partitioning by modifying parameters in the Subsystem
Parameters dialog box for each subsystem.

1 Open your copy of the throttle controller model,
throttlecntrl_funcpartition.mdl.

2 Open the Subsystem Parameters dialog box for subsystems PI_ctrl_1 and
PI_ctrl_2. Examine the parameter settings.

a Right-click the subsystem and select Subsystem Parameters. The
Function Block Parameters dialog box opens.

3-33



3 Simulink® Tutorials

b On theMain tab, Treat as atomic unit is selected. This parameter is
automatically selected and unavailable for atomic subsystems. When
set, this parameter causes Simulink software to treat block methods
associated with a subsystem as a unit when determining execution
order. The parameter provides a way to group functional aspects of a
model at the execution level. This parameter enables parameters on
the Code Generation tab.

c Click the Code Generation tab.

d Note the following parameter settings:

3-34



Partitioning and Exporting Functions

Parameter Rationale for Setting

Function
packaging

Reusable function causes the code generator
to produce reentrant code for the subsystem.
Reentrant code is a reusable programming routine
that multiple programs can use simultaneously.
Operating systems and other system software that
use multithreading to handle concurrent events use
reentrant code. Reentrant code does not maintain
state data. No persistent variables are in the
function. Calling programs maintain state variables
and pass them into the function. Any number of
users or processes can share one copy of a reentrant
routine

Function
name options

User Specified enables you to specify a unique
name for the generated function.

Function
name

Enables you to name the function that the code
generator produces for a subsystem. In this case,
the code generator names the reusable function
PI_Cntrl_Reusable.

File name
options

Use function name causes the code generator
to place the generated function in a separate file
and name it with the same name as the generated
function. In this case, the code generator places the
function in the model build folder in the file the
PI_Cntrl_Reusable.c.

3 Open the Subsystem Parameters dialog box for subsystem
Pos_Command_Arbitrationand examine the parameter settings. Treat
as atomic unit on the Main tab is already selected. The following table
provides the rationale for the parameter settings on the Code Generation
tab.

3-35



3 Simulink® Tutorials

Parameter Rationale for Setting

Function
packaging

Function causes the code generator to produce a
separate function that is not reentrant and has
no arguments.

Function name
options

Auto assigns the generated function a
unique name using the default convention
model_subsystem(). model is the name of
the model and subsystem is the name of the
subsystem. In this case, the function name is
throttlecntrl_funcpartition_Pos_Command_-
Arbitration.

File name options Auto causes the code generator to place the function
code in the throttlecntrl_funcpartition.c
file.

4 Open the Subsystem Parameters dialog box for subsystem
Execution_Order_Controland examine the parameter settings. For this
subsystem, the Treat as atomic unit parameter is not set, restricting
Function packaging to Function only.

5 Close the model.

For more information, see Subsystem.

Using Mask to Pass Parameters into Library
Subsystem
Subsystem masks enable Simulink software to define subsystem parameters
outside the scope of a library block. By changing the parameter value at
the top of the library, you can reuse the same library with multiple sets of
parameters within the same model.

When a subsystem is reusable and has a mask, the generated code passes the
masked parameters into the reentrant code as arguments. Code generation
software fully supports the use of data objects in masks. The data objects are
used in the generated code.

Examine the masks for subsystems PI_ctrl_1 and PI_ctrl_2.

3-36



Partitioning and Exporting Functions

1 Open your copy of the throttle controller model,
throttlecntrl_funcpartition.mdl.

2 Open the Mask Parameters dialog box for subsystem PI_ctrl_1 by
double-clicking the subsystem. The dialog box opens, showing data objects
for gain parameters P_gain and I_gain.

3 Open the Mask Parameters dialog box for subsystem PI_ctrl_2. For this
subsystem, Simulink creates two new data objects, P_Gain_2 and I_Gain_2.

3-37



3 Simulink® Tutorials

4 Close the Mask Parameters dialog boxes and the model.

Generating Code for Full Model and Exported
Functions
The code generator can build code at the system (full model) and subsystem
levels. Compare the files generated for the full model build with files
generated for exported functions.

1 Open your copy of the throttle controller model,
throttlecntrl_funcpartition.mdl.

2 Generate code for the model.

3 Export a function for the PI_ctrl_1 subsystem.

a In the model window, right-click PI_ctrl_1 and select Code
Generation > Export Functions. The Build code for Subsystem
dialog box opens.

b In the Build code for Subsystem dialog box, click Build. The code
generator produces a complete set of code files for the subsystem and
places them in the build folder PI_ctrl_1_ert_rtw.

4 If you have a Stateflow license, export a function for the
Pos_Command_Arbitration subsystem. The code generator produces a
complete set of code files for the subsystem and places them in the build
folder Pos_Command_Arbitration_ert_rtw.

5 Examine the generated code listed in the following table by locating and
opening the files in the respective build folders.

File Full Build PI_ctrl_1 Pos_Command_-
Arbitration
(requires
Stateflow
license)

throttlecntrl_funcpartition.c Yes
Step function

No No

PI_ctrl_1.c No Yes
Trigger function

No

3-38



Partitioning and Exporting Functions

File Full Build PI_ctrl_1 Pos_Command_-
Arbitration
(requires
Stateflow
license)

Pos_Command_Arbitration.c
(requires Stateflow license)

No No Yes
Initialization and
Function

PI_Ctrl_Reusable.c Yes
Called by main

Yes
Called by
PI_ctrl_1

No

ert_main.c Yes Yes Yes

eval_data.c Yes* Yes* No
Eval data not used
in diagram

* The content of eval_data.c differs between the full model and export
function builds. The full model build includes all parameters that the
model uses while the export function contains only variables that the
subsystem uses.

6 Close all dialog boxes and the model.

Examining Masked Data in Generated Code

1 Open throttlecntrl_funcpartition.c.

2 Search for PI_Cntrl_Reusable. The function call shows how the code
generator passes data objects (P_Gain and I_Gain) from the subsystem
masks into the reentrant code.

PI_Cntrl_Reusable(pos_rqst, fbk_1, &throttlecntrl_funcpartiti_DWork_DWork->PI_ctrl_1,

I_Gain, P_Gain);

3 Search for PI_Cntrl_Reusable again. The second function call passes data
objects from the mask for subsystem PI_ctrl_2.

PI_Cntrl_Reusable(pos_rqst, fbk_2, &throttlecntrl_funcpartiti_DWork->PI_ctrl_2,

3-39



3 Simulink® Tutorials

I_Gain_2, P_Gain_2);

4 Close the C code file.

Changing Execution Order and Simulation Results
Without explicit control, subsystems in model throttlecntrl_funcpartition
execute in the following order:

1 PI_ctrl_1

2 PI_ctrl_2

3 Pos_Cmd_Arbitration

You can use the test harness to see the effect of the execution order on the
simulation results. The Execution_Order_Control subsystem is set up so
that you can switch between two configurations, which change the execution
order of the other subsystems in the model.

Note The following procedure requires a Stateflow license.

Change the execution order.

1 Open your copy of the throttle controller model,
throttlecntrl_funcpartition.mdl.

2 Right-click the Execution_Order_Control subsystem. Select Block
Choice > PI_1_then_PI_2_then_Pos_Cmd_Arb to set the subsystem
execution order to PI_ctrl_1, PI_ctrl_2, then Pos_cmd_Arbitration.

3 Save the model.

4 Open the test harness model, throttlecntrl_testharnessert.mdl.

5 Set up the test harness to use model throttlecntrl_funcpartition as
the unit under test.

a Right-click the Unit_Under_Test Model block and select Model
Reference Parameters.

3-40



Partitioning and Exporting Functions

b SetModel name to throttlecntrl_funcpartition and click OK.

c Update the model diagram.

6 Run the test harness.

The resulting plot shows that the difference between the golden and
simulated versions of the model remains zero.

7 In the model throttlecntrl_funcpartition, change the execution order
to Pos_cmd_Arbitration_then_PI_1_then_PI_2, update the model
diagram, and save the model.

8 Run the test harness again.

3-41



3 Simulink® Tutorials

A slight variation exists in the output results depending on the order
of execution. The difference is most noticeable when the desired input
changes.

9 Close the throttle controller and test harness models.

Key Points

• One way of controlling execution order of subsystems during simulation
is to use function-call subsystems and a Stateflow chart that models the
calling functionality of a scheduler.

3-42



Partitioning and Exporting Functions

• For atomic subsystems, you can instruct the code generator to partition
algorithm code across multiple functions.

• When partitioning code across multiple functions, you can specify the name
of the function for each subsystem and the name of the separate file for the
code with parameters in the Subsystem Parameters dialog box.

• When a subsystem is reusable and has a mask, the generated code passes
the masked parameters into the reentrant code as arguments.

• The code generator can build code at the system (full model) and subsystem
levels.

• At the subsystem level, the code generator produces a full set of generated
files in a separate build folder.

• You can change the execution of a model by using a subsystem containing
a Stateflow chart that models the calling functionality of a scheduler and
changing the setting of the Block Choice option on the subsystem’s
context menu.

Learn More

• in the Simulink Coder documentation

• “S-Function Code Insertion ” in the Simulink Coder documentation

• “Exporting Function-Call Subsystems” in the Embedded Coder
documentation

• “Function Prototype Control” in the Embedded Coder documentation

• “Working with Block Masks” in the Simulink documentation

3-43



3 Simulink® Tutorials

Integrating Generated Code into External Environment

In this section...

“About this Tutorial” on page 3-44

“Relocating Code to Another Development Environment” on page 3-45

“Integrating Generated Code into Existing System” on page 3-46

“Setting Up Main Function” on page 3-46

“Matching System Interfaces” on page 3-48

“Building Project in Eclipse Environment” on page 3-51

“Key Points” on page 3-52

“Learn More” on page 3-52

About this Tutorial

Learning Objectives

• Collect and relocate files to build an executable outside of the Simulink
environment.

• Set up generated code to interface with external variables and functions.

• Build a full system that includes your generated code.

Prerequisites

• Access to installed versions of the Eclipse Integrated Development
Environment (IDE) and the Cygwin Debugger. However, required
integration tasks demonstrated in the tutorial are common to all
integration environments. For information on how to install the Eclipse
IDE and Cygwin Debugger, see Appendix A, “Installing and Using an IDE
for the Integration and Testing Tutorials”

• Able to read C code.

• Familiarity with debugging tools and capabilities.

3-44



Integrating Generated Code into External Environment

Required Files

• rtwdemo_throttlecntrl_externenv.mdl

• Files in
matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/externenv_files,
where matlabroot is your MATLAB installation folder

Relocating Code to Another Development
Environment
Generated code depends on static support files that MathWorks provides. If
you need to relocate the static and generated code files for a model to another
development environment, such as a dedicated build system, use the Simulink
Coder pack-and-go utility (packNGo ). This utility finds and packages all files
to build an executable image, including external files you define in the Code
Generation > Custom Code pane of the Configuration Parameters dialog
box, and packages the files in a standard zip file.

1 Open rtwdemo_throttlecntrl_externenv.mdl. Save a copy to
throttlecntrl_externenv.mdl in a writable location on your MATLAB
path. Proceed through the tutorial from this location.

2 Generate code for the model.

After code generation, the model is configured to run packNGo.

3 In your working folder, find and examine the contents of the generated
file throttlecntrl_externenv.zip.

The number of files in the zip file depends on the version of Embedded
Coder software that you are running and the configuration of the model.
The compiler does not require all files in the zip file. The compiled
executable size (RAM/ROM) is dependent on the link process. You must
configure the linker to include only required object files.

To generate the zip file manually, in the MATLAB Command Window:

1 Load the buildInfo.mat file, located in the build folder for the model.

2 Enter the command packNGo(buildInfo).

3-45



3 Simulink® Tutorials

For more information about using the packNGo utility, see “Relocating Code to
Another Development Environment” in the Simulink documentation.

Integrating Generated Code into Existing System
A full embedded controls system has multiple components, both hardware
and software. Control algorithms are just one type of component. The other
standard types of components include:

• An operating system (OS)

• A scheduling layer

• Physical hardware I/O

• Low-level hardware device drivers

In general, code is not generated for any of these components. Instead,
you develop interfaces that connect the components. MathWorks provides
hardware interface block libraries for many common embedded controllers.
For details, see the block libraries under Embedded Targets.

Setting Up Main Function
For this tutorial, you modify a supplied main function to build a full system.
The main function performs basic actions to exercise the code for a simple
system. It is not an example of an actual application main function.

1 Copy files for the example main function
to your working folder. The files are in
matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/externenv_files.
matlabroot represents the name of your MATLAB installation folder.

2 Open and examine the code in the file example_main.c.

Note For the example_main.c file, name your copy of
the model file rtdemo_throttlecntrl_externenv.mdl
asthrottlecntrl_externenv.mdl.

#include <stdio.h> /* This ert_main.c example uses printf/fflush */

3-46



Integrating Generated Code into External Environment

#include "throttlecntrl_externenv.h" /* Model's header file */

#include "rtwtypes.h" /* MathWorks types */

#include "throttlecntrl_externenv_private.h" /* Local data for PCG Eval */

#include "defineImportedData.h" /* The inputs to the system */

/* Observable signals */

static BlockIO_throttlecntrl_externenv throttlecntrl_externenv_B;

/* Observable states */

static D_Work_throttlecntrl_externenv throttlecntrl_externenv_DWork;

real_T pos_cmd_one; /* '<Root>/Signal Conversion1' */

real_T pos_cmd_two; /* '<Root>/Signal Conversion2' */

ThrottleCommands ThrotComm; /* '<Root>/Pos_Command_Arbitration' */

ThrottleParams Throt_Param; /* '<S1>/Bus Creator' */

int simulationLoop = 0;

int_T main(void)

{

/* Initialize model */

rt_Pos_Command_Arbitration_Init(); /* Set up the data structures for chart*/

throttle_cnt_Define_Throt_Param(); /* SubSystem: '<Root>/Define_Throt_Param' */

defineImportData(); /* Defines the memory and values of inputs */

do /* This is the "Schedule" loop.

Functions would be called based on a scheduling algorithm */

{

/* HARDWARE I/O */

/* Call control algorithms */

PI_Cntrl_Reusable((*pos_rqst),fbk_1,&throttlecntrl_externenv_B.PI_ctrl_1,

&throttlecntrl_externenv_DWork.PI_ctrl_1);

PI_Cntrl_Reusable((*pos_rqst),fbk_2,&throttlecntrl_externenv_B.PI_ctrl_2,

&throttlecntrl_externenv_DWork.PI_ctrl_2);

pos_cmd_one = throttlecntrl_externenv_B.PI_ctrl_1.Saturation1;

pos_cmd_two = throttlecntrl_externenv_B.PI_ctrl_2.Saturation1;

throttle_Pos_Command_Arbitration(pos_cmd_one, &Throt_Param, pos_cmd_two,

3-47



3 Simulink® Tutorials

&throttlecntrl_externenv_B.sf_Pos_Command_Arbitration);

simulationLoop++;

} while (simulationLoop < 2);

return 0;

}

Identify areas of the code that perform each of the following functions:

• Defines function interfaces (function prototypes)

• Includes required files for data definition

• Defines extern data

• Initializes data

• Calls simulated hardware

• Calls algorithmic functions

3 Close example_main.c.

The order of execution of functions in example_main.c matches the order
in which the test harness model and throttlecntrl_externenv.h call the
subsystems. If you change the order of execution in example_main.c, results
from the executable image differ from simulation results.

Matching System Interfaces
Integration requires matching the data and function interfaces of the
generated code and the existing system code. In this example, the
example_main.c file defines the data with #include statements and calls the
functions from the generated code.

1 Specify input data.

The system has three input signals: pos_rqst, fbk_1, and fbk_2. The two
feedback signals are imported externs (ImportedExtern) and the position
signal is an imported extern pointer (ImportedExternPointer). Because
of how the signals are defined, the code generator does not create variables

3-48



Integrating Generated Code into External Environment

for them. Instead, the signal variables are defined in a file that is external
to the MATLAB environment.

a Open your copy of the file defineImportedData.c.

/* Define imported data */
#include "rtwtypes.h"
real_T fbk_1;
real_T fbk_2;
real_T dummy_pos_value = 10.0;
real_T *pos_rqst;
void defineImportData(void)
{

pos_rqst = &dummy_pos_value;
}

This file contains code for a simple C stub that defines the signal
variables. The generated code has access to the data from the extern
definitions in your generated throttlecntrl_externenv_Private.h
file. In a real system, the data comes from other software components
or from hardware devices.

b Close defineImportedData.c.

c In your build folder, open throttlecntrl_externenv_Private.h.

d Find and examine the following extern definitions.

/* Imported (extern) block signals */

extern real_T fbk_1; /* '<Root>/fbk_1' */

extern real_T fbk_2; /* '<Root>/fbk_2' */

/* Imported (extern) pointer block signals */

extern real_T *pos_rqst; /* '<Root>/pos_rqst' */

e Close throttlecntrl_externenv_Private.h.

2 Specify output data.

You do not have to do anything with the output data. However, you can
access the data in your generated throttlecntrl_externenv.h file.

a In your build folder, open throttlecntrl_externenv.h

3-49



3 Simulink® Tutorials

b Examine the contents of the file.

c Close throttlecntrl_externenv.h.

“Verifying Generated Code” on page 3-53 shows how to save the output
data to a log file.

3 Identify additional data.

The code generator creates several data elements that you do not need to
access to complete this tutorial. Such data elements include:

• Block state values (integrator, transfer functions)

• Local parameters

• Time

For this tutorial, the throttlecntrl_externenv.h file declares this data.

a In your build folder, open throttlecntrl_externenv.h

b Search the file for the data listed in the following table. The table lists
the most common data structures. Depending on the configuration of the
model, some or all of these structures are in the generated code.

Data Type Data Name Data Purpose

Constants throttlecntrl_externenv_cP Constant parameters

Constants throttlecntrl_externenv_cB Constant block I/O

Output throttlecntrl_externenv_U Root and atomic subsystem input

Output throttlecntrl_externenv_Y Root and atomic subsystem output

Internal data throttlecntrl_externenv_B Value of block output

Internal data throttlecntrl_externenv_D State information vectors

Internal data throttlecntrl_externenv_M Time and other system level data

Internal data throttlecntrl_externenv_Zero Zero-crossings

Parameters throttlecntrl_externenv_P Parameters

c Close throttlecntrl_externenv.h.

4 Match the function-call interface.

3-50



Integrating Generated Code into External Environment

By default, the code generator creates functions that have a void
Func(void) interface. If you configure the model or an atomic subsystem
as reentrant code, the code generator creates a more complex function
prototype.

a Open your copy of example_main.c.

b The example_main function is configured to call the functions.

throttlecntrl_externenv_B.sf_Pos_Command_Arbitration);

((*pos_rqst),fbk_1,&throttlecntrl_externenv_B.PI_ctrl_1,

&throttlecntrl_externenv_DWork.PI_ctrl_1);

PI_Cntrl_Reusable((*pos_rqst),fbk_2,&throttlecntrl_externenv_B.PI_ctrl_2,

&throttlecntrl_externenv_DWork.PI_ctrl_2);

pos_cmd_one = throttlecntrl_externenv_B.PI_ctrl_1.Saturation1;

pos_cmd_two = throttlecntrl_externenv_B.PI_ctrl_2.Saturation1;

throttlePos_Command_Arbitration(pos_cmd_one, &Throt_Param, pos_cmd_two,

&throttlecntrl_externenv_B.sf_Pos_Command_Arbitration);

Calls to the PI_Cntrl_Reusable function use a mixture of user-defined
variables and default data structures. The build process defines data
structures in throttlecntrl_externenv.h. The preceding code fragment
also shows how the data structures map to user-defined variables.

Building Project in Eclipse Environment
This tutorial uses the Eclipse IDE to build the embedded system.

1 Create a build folder on your C drive. Name the folder
such that the path contains no spaces (for example,
EclipseProjects/throttlecntrl/externenv). For this tutorial
and “Verifying Generated Code” on page 3-53, you use the Cygwin
Debugger, which requires that your build folder be on your C drive and
the folder path not include spaces.

Note If you have not generated code for the model, or the zip file does
not exist, complete the steps in “Relocating Code to Another Development
Environment” on page 3-45 before continuing to the next step.

3-51



3 Simulink® Tutorials

2 Unzip the file throttlecntrl_externenv.zip into the build folder you
just created.

3 Delete the files ert_main.c and throttlecntrl_externenv.c. Then, add
example_main.c that you examined in “Setting Up Main Function” on
page 3-46.

4 Use the Eclipse Integrated Development Environment (IDE) and Cygwin
Debugger to step through and evaluate the execution behavior of the
generated C code. For instructions on installing the IDE, creating a new
project, and configuring the debugger, see Appendix A, “Installing and
Using an IDE for the Integration and Testing Tutorials”.

5 Close throttlecntrl_externenv.mdl.

Key Points

• You can find and package all files you need to build an executable image in
an alternative build environment by using the Simulink Coder pack-and-go
utility.

• A main function performs actions to exercise the code for a system.

• Integration of system components requires matching data and function
interfaces of generated code and existing system code.

• Depending on the system, you might need to consider input data, output
data, and other data generated in the generated model.h file.

Learn More

• “Relocating Code to Another Development Environment” in the Simulink
Coder documentation

• “Deployment”

• “Embedded IDEs and Embedded TargetsDesktop IDEs and Desktop
Targets”

3-52



Verifying Generated Code

Verifying Generated Code

In this section...

“About this Tutorial” on page 3-53

“Methods for Verifying Generated Code” on page 3-54

“Reusing Test Data By Importing and Exporting Test Vectors” on page 3-55

“Verifying Behavior of Model with Software-in-the-Loop Testing” on page
3-56

“Verifying System Behavior By Importing and Exporting Test Vectors”
on page 3-59

“Testing with Processor-in-the-Loop Testing” on page 3-62

“Key Points” on page 3-62

“Learn More” on page 3-62

About this Tutorial

Learning Objectives

• Identify methods available for testing generated code.

• Test generated code in the Simulink environment.

• Test generated code outside of the Simulink environment.

Prerequisites

• Access to installed versions of the Eclipse Integrated Development
Environment (IDE) and the Cygwin Debugger. However, required
integration tasks demonstrated in the tutorial are common to all
integration environments. For information on how to install the Eclipse
IDE and Cygwin Debugger, see Appendix A, “Installing and Using an IDE
for the Integration and Testing Tutorials”

• Able to read C code.

• Familiarity with debugging tools and capabilities.

3-53



3 Simulink® Tutorials

Required Files

• rtwdemo_throttlecntrl_testcode.mdl

• rtwdemo_throttlecntrl_testharnessSIL.mdl

• Files in
matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/testcode_files,
where matlabroot is your MATLAB installation folder

Methods for Verifying Generated Code
Simulink software supports multiple methods for verifying the behavior of
code generated for a system.

Test Method What the Method
Does

Advantages Disadvantages

Microsoft
Windows
run-time
executable

Generates a Windows
executable and runs
the executable from the
command prompt

Easy to create

Can use C debugger to
evaluate code

Emulates only part of
the target hardware

Software-in-the-loop
(SIL) testing

Uses an S-function
wrapper to include the
generated code in a
Simulink model

Easy to create

Allows you to reuse
the Simulink test
environment

Can use C debugger to
evaluate code

Emulates only part of
the target hardware

Processor-in-the-loop
(PIL) testing

Downloads code to a
target processor and
communicates with
it from Simulink; see

Allows you to reuse
the Simulink test
environment

Requires additional
steps to set up test
environment

3-54



Verifying Generated Code

Test Method What the Method
Does

Advantages Disadvantages

“How SIL and PIL
Simulations Work” Can use C debugger

with the simulation

Uses actual processor

On-target rapid
prototyping

Runs generated code on
the target processor as
part of the full system

Can determine actual
hardware constraints

Allows testing of
component within the
full system

Processor runs in real
time

Requires hardware

Requires additional
steps to set up test
environment

Reusing Test Data By Importing and Exporting Test
Vectors
When a unit under test is in the Simulink environment, you can reuse test
data inside and outside of the Simulink environment.

1 Save the Simulink data into a file.

2 Format the data in a way that is accessible to the system code.

3 Read the data file as part of the system code procedures.

You can also reuse data from an external environment, such as an interactive
development environment (IDE) for a specific target, in the Simulink test
environment. To do so, you must save the data in a format that MATLAB
software can read.

3-55



3 Simulink® Tutorials

Verifying Behavior of Model with
Software-in-the-Loop Testing
You can automatically generate code from a Model block, wrap the
code in an S-Function, and bring the S-Function into another model for
software-in-the-loop testing.

1 Configure the model you want to test.

a Open rtwdemo_throttlecntrl_testcode.mdl. Save a copy to
throttlecntrl_testcode.mdl in a writable location on your MATLAB
path. Proceed through the tutorial from this location.

b Open the Configuration Parameters dialog box. Set Hardware
Implementation > Device vendor to Generic and Hardware
Implementation > Device type to 32-bit x86 compatible.

c Click OK to apply the changes. Close the dialog box.

2 Make sure that you can build an executable for throttlecntrl_testcode.

3 Configure the test harness model.

3-56



Verifying Generated Code

a Open rtwdemo_throttlecntrl_testharnessSIL.mdl. Save a copy to
throttlecntrl_testharnessSIL.mdl in a location on your MATLAB
path. The test harness uses a Model block to access the model to verify
with software-in-the-loop (SIL) testing.

b Right-click the throttlecntrl_testcode Model block and selectModel
Reference Parameters.

c Set Model name to throttlecntrl_testcode.

d Set Simulation mode to Software-in-the-loop (SIL) and click OK.

After you configure the Model block for SIL verification, the block
includes a (SIL) tag, as the following figure shows:

3-57



3 Simulink® Tutorials

e Update the test harness model diagram (Edit > Update Diagram).

4 Run the test harness. As the following plot shows, the results from running
the generated code are the same as the simulation results.

3-58



Verifying Generated Code

Verifying System Behavior By Importing and
Exporting Test Vectors

About the example_main.c
This example extends the example in “Integrating Generated Code into
External Environment” on page 3-44. In this case, example_main.c simulates
hardware I/O.

Open matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/-
verification_files/example_main.c.

This version of example_main.c has the following order of execution:

• Initialize data (one time)

3-59



3 Simulink® Tutorials

while < endTime

• Read simulated hardware input

• PI_cnrl_1

• PI_ctrl_2

• Pos_Command_Arbitration

• Write simulated hardware output

end while

The example_main.c uses two functions, plant and hardwareInputs.

File Name Function Signature Comments

Plant.c void Plant(void) Code generated from the
plant section of the test
harness. Simulates the
throttle body response to
throttle commands.

HardwareInputs.c void
hardwareInputs(void)

Provides the pos_req
signal and adds
noise from the
Input_Signal_Scaling
subsystems into the
plant feedback signal.

A handwritten function, WriteDataForEval.c, logs data. When the
test is complete, the function executes and writes test data to the file,
ThrottleCntrl_ExternSimData.m. You can load this file into the MATLAB
environment and compare the data to simulation data.

Importing and Exporting Test Vectors Using the Eclipse
Environment
This tutorial uses the Eclipse Integrated Development Environment (IDE)
debugger to build an embedded system.

3-60



Verifying Generated Code

1 Open your copy of the throttle controller model,
throttlecntrl_testcode.mdl.

2 Add the additional files required to build an executable. In the
Configuration Parameter dialog box, add the following paths for Code
Generation > Custom Code > Include list of additional > Include
directories:

"$matlabroot$\toolbox\rtw\rtwdemos\EmbeddedCoderOverview\"

"$matlabroot$\toolbox\rtw\rtwdemos\EmbeddedCoderOverview\verification_files\"

3 Make sure the model configuration parameter Code Generation > SIL
and PIL Verification > Create block is set to None.

4 Build the model.

5 Create a build folder on your C drive. Name the folder
such that the path contains no spaces (for example,
EclipseProjects/throttlecntrl/testcode). For this tutorial,
you use the Cygwin Debugger, which requires that your build folder be on
your C drive and that the folder path not include spaces.

6 Unzip the throttlecntrl_testcode.zip file, in your working folder, into
the build folder that you just created.

7 Delete the ert_main.c and throttlecntrl_testcode.c files. Then, add
example_main.c that you examined in “Setting Up Main Function” on
page 3-46.

8 Run the control code in Eclipse to generate the eclipseData.m file. This
is the file that writeDataForEval.c generates.

Consult “Integrating and Testing Code with the Eclipse IDE” on page A-5
or Eclipse IDE help.

9 Plot the results that you get from the Eclipse environment. Compare the
data from the Eclipse run with the data results from the test harness.

10 Close throttlecntrl_testcode.

3-61



3 Simulink® Tutorials

Testing with Processor-in-the-Loop Testing
For information, instructions, and demos, see “SIL and PIL Simulation” in
the Embedded Coder.

Key Points

• Methods for verifying code generated for an embedded system include
running a MicrosoftWindows run-time executable, SIL testing, PIL testing,
and on-target rapid prototyping.

• You can reuse test data by importing and exporting test vectors.

Learn More

• “SIL and PIL Simulation”

3-62



Evaluating Generated Code

Evaluating Generated Code

In this section...

“About this Tutorial” on page 3-63

“Evaluating Code” on page 3-63

“About the Compiler” on page 3-64

“Viewing Code Metrics” on page 3-64

“About the Build Configurations” on page 3-64

“Configuration 1: Reusable Functions, Data Type Double” on page 3-65

“Configuration 2: Reusable Functions, Data Type Single” on page 3-66

“Configuration 3: Nonreusable Functions, Data Type Single” on page 3-67

About this Tutorial

Learning Objectives

• Get familiar with the build characteristics of the code you generated for
the throttle controller model

• Explore how different model configurations affect the model’s RAM/ROM
metric.

Prerequisites

Required Files

Evaluating Code
Efficiency of generated code is based on two primary metrics: execution speed
and memory usage. Often, faster execution requires more memory. Memory
usage in ROM (read-only memory) and RAM (random access memory)
presents compromises:

• Accessing data from RAM is faster than accessing data from ROM.

3-63



3 Simulink® Tutorials

• Systems store executables and data using ROM because RAM does not
maintain data between power cycles.

This section describes memory requirements divided into function and data
components. Execution speed is not evaluated.

About the Compiler
The Freescale™ CodeWarrior® is used in this evaluation.

Compiler Version Target Processor

Freescale CodeWarrior v5.5.1.1430 Power PC 565

Viewing Code Metrics
As described in “Integrating Generated Code into External Environment” on
page 3-44 and “Verifying Generated Code” on page 3-53, the generated code
might require utility functions. The utility functions have a fixed overhead.
Their memory requirements are a one-time cost. Because of this, the data in
this module shows the following memory usage.

Algorithms The C code generated from the Simulink diagrams and the
data definition functions

Utilities Functions that are part of the Simulink Coder library source

Full The sum of both the Algorithm and Utilities

About the Build Configurations
The same model configuration parameter settings are used in three
evaluations. CodeWarrior is configured to minimize memory usage and apply
all allowed optimizations.

3-64



Evaluating Generated Code

Configuration 1: Reusable Functions, Data Type
Double

• Source files:
matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/
CodeMetricFiles/PCG_Eval_CodeMetrics_1

• Data Type: All doubles

• Included Data: All data required for the build is in the project (including
data defined as extern: pos_rqst, fbk_1, and fbk_2)

• Main Function: A modified version of example_main from “Integrating
Generated Code into External Environment” on page 3-44

• Function-Call Method: Reusable functions for the PI controllers

3-65



3 Simulink® Tutorials

Memory Usage

Usage Type Function (bytes) Data (bytes)

Full 1764 589

Algorithms 1172 549

Utilities 592 40

Configuration 2: Reusable Functions, Data Type
Single
In this configuration, the data types for the model are changed from the
default of double to single.

• Source files:
matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/
CodeMetricFiles/PCG_Eval_CodeMetrics_2

• Data Type: All singles

3-66



Evaluating Generated Code

• Included Data: All data required for the build is in the project (including
data defined as extern: pos_rqst, fbk_1, and fbk_2)

• Main Function: A modified version of example_main from “Integrating
Generated Code into External Environment” on page 3-44

• Function-Call Method: Reusable functions for the PI controllers

Memory Usage

Usage Type Function (bytes) Data (bytes)

Full 1392 348

Algorithms 800 308

Utilities 592 40

Comparing the memory used by the algorithms in the first configuration to
the current configuration, there is a large drop in the data memory, from 549
bytes to 308 bytes, or 56 percent. The function size also decreased from 1172
to 800 bytes, or 68 percent. Running the simulation with data type set to
single does not reduce the accuracy of the control algorithm. Therefore, this
configuration is an acceptable design decision.

Configuration 3: Nonreusable Functions, Data Type
Single

• Source files:
matlabroot/toolbox/rtw/rtwdemos/EmbeddedCoderOverview/
CodeMetricFiles/PCG_Eval_CodeMetrics_3

• Data Type: All singles

• Included Data: All data required for the build is in the project (including
data defined as extern: pos_rqst, fbk_1, and fbk_2)

• Main Function: A modified version of example_main from “Integrating
Generated Code into External Environment” on page 3-44

• Function-Call Method: The function interface is void void. Global
parameters pass the data.

3-67



3 Simulink® Tutorials

The memory requirements for the third configuration are higher than the
memory requirements for the second configuration. If the data type is doubled,
the memory requirements are higher than the first configuration, as well.

Memory Usage

Usage Type Function (bytes) Data (bytes)

Full 1540 388

Algorithms 948 348

Utilities 592 40

3-68



A

Installing and Using an
IDE for the Integration and
Testing Tutorials

• “Installing the Eclipse IDE and Cygwin Debugger” on page A-2

• “Integrating and Testing Code with the Eclipse IDE” on page A-5



A Installing and Using an IDE for the Integration and Testing Tutorials

Installing the Eclipse IDE and Cygwin Debugger

In this section...

“Installing the Eclipse IDE” on page A-2

“Installing the Cygwin Debugger” on page A-3

Installing the Eclipse IDE
This section describes how to install the Eclipse IDE for C/C++ Developers
and the Cygwin debugger for use with the integration and verification
tutorials. Installing and using the Eclipse IDE for C/C++ Developers and
the Cygwin debugger is optional. Alternatively, you can use another
Integrated Development Environment (IDE) or use equivalent tools such as
command-line compilers and makefiles.

Note To use the Eclipse IDE with embedded IDEs and target processors,
see “Working with Eclipse IDE” under “Embedded IDEs and Embedded
TargetsDesktop IDEs and Desktop Targets”.

1 From the Eclipse Downloads web page (http://www.eclipse.org/downloads/),
download the Eclipse IDE for C/C++ Developers to your C: drive.

You also need the Eclipse C/C++ Development Tools (CDT) that are
compatible with the Eclipse IDE. You can install the CDT as part of the
Eclipse C/C++ IDE packaged zip file or you can install it into an existing
version of the Eclipse IDE.

If You Install the CDT... Then...

As part of the Eclipse C/C++
IDE packaged zip file

Go to step 4

Into an existing version of the
Eclipse IDE

Go to step 2

2 From the Eclipse CDT Downloads page
(http://www.eclipse.org/cdt/downloads.php), download the Eclipse C/C++

A-2



Installing the Eclipse™ IDE and Cygwin™ Debugger

Development Tools (CDT) that is compatible with your installed version of
the Eclipse IDE.

3 Unzip the downloaded Eclipse CDT zip file. Copy the contents of the
directories features and plugins to the corresponding directories in
c:\eclipse.

4 Create the folder c:\eclipse.

5 Unzip the downloaded Eclipse IDE zip file into c:\eclipse.

6 On your desktop, create a link to the executable file
c:\eclipse\eclipse.exe.

Installing the Cygwin Debugger

1 From the Cygwin home page (http://www.cygwin.com), download the
Cygwin setup.exe file.

2 Run the setup.exe file. A Cygwin Setup - Choose Installation Type dialog
box opens.

3 Follow the installation procedure:

• Select the option for installing over the Internet.

• Accept the default root folder c:\cygwin.

• Specify a local package folder. For example, specify c:\cygwin\packages.

• Specify how you want to connect to the Internet.

• Choose a download site.

4 In the dialog box for selecting packages, set the Devel category to Install
by clicking the selector icon .

5 Add the folder c:\cygwin\bin to your system Path variable. For example,
on a Windows XP system:

a Click Start > Settings > Control
Panel > System > Advanced > Environment Variables.

b Under System variables, select the Path variable and click Edit.

A-3



A Installing and Using an IDE for the Integration and Testing Tutorials

c Add c:\cygwin\bin to the variable value and click OK.

Note To use Cygwin, your build folder must be on your C drive. The folder
path cannot include any spaces.

A-4



Integrating and Testing Code with the Eclipse™ IDE

Integrating and Testing Code with the Eclipse IDE

In this section...

“Introducing Eclipse” on page A-5

“Defining a New C Project” on page A-6

“Configuring the Debugger” on page A-7

“Starting the Debugger” on page A-7

“Setting the Cygwin Path” on page A-8

“Actions and Commands in the Eclipse Debugger” on page A-8

Introducing Eclipse
Eclipse (www.eclipse.org) is an integrated development environment for
developing and debugging embedded software. Cygwin (www.cygwin.com)
is an environment that is similar to the Linux environment, but runs on
Windows and includes the GCC compiler and debugger.

This section contains instructions for using the Eclipse IDE with Cygwin
tools to build, run, test, and debug projects that include generated code,
as described in “Integrating Generated Code into External Environment”
on page 3-44 and “Verifying Generated Code” on page 3-53. There are
many other software packages and tools that can work with code generation
software to perform similar tasks.

“Installing the Eclipse IDE and Cygwin Debugger” on page A-2 contains
instructions for installing Eclipse and Cygwin. Before proceeding, be sure you
have installed Eclipse and Cygwin, as described in that section.

Note To use Eclipse IDE with embedded IDEs and target processors,
see “Working with Eclipse IDE” under “Embedded IDEs and Embedded
TargetsDesktop IDEs and Desktop Targets”.

To use Cygwin, your build folder must be on your C drive. The folder path
cannot include any spaces.

A-5

http://www.eclipse.org/
http://www.cygwin.com/


A Installing and Using an IDE for the Integration and Testing Tutorials

Project Names and File Names
“Integrating Generated Code into External Environment” on page 3-44 and
“Verifying Generated Code” on page 3-53 both use the instructions in this
section, but the project names and file names differ. Where you see ## in a
project name or file name, substitute:

• externenv, if you are working in “Integrating Generated Code into
External Environment” on page 3-44

• testcode, if you are working in “Verifying Generated Code” on page 3-53

Defining a New C Project

1 In Eclipse, choose File > New > C Project. A C Project dialog box opens.

2 In the C Project dialog box:

a In the Project name field, type the project name throttlecntrl_##
(## is externenv or testcode) .

b In the Location field, specify the location of your build folder (for
example, C:\EclipseProjects\throttlecntrl\externenv).

c In the Project type selection box, select and expandMakefile project.

d Click the Empty Project node.

e Under Other Toolchains, select Cygwin GCC .

f Click Next. A Select Configurations dialog box opens.

3 In the Select Configurations dialog box, click Advanced settings. The
Properties dialog box appears.

4 In the Properties dialog box:

a Select C/C++ Build.

b Select Generate Makefiles automatically.

c Select the Behavior tab.

d Select Build on resource save (Auto build).

e Click Apply and OK.

A-6



Integrating and Testing Code with the Eclipse™ IDE

The Properties box closes.

5 In the Select Configurations dialog box, click Finish.

Configuring the Debugger

1 In Eclipse, choose Run > Debug Configurations. The Debug
Configurations dialog box opens.

2 Double-click C/C++ Application. A throttlecntrl_externenv Default
entry appears under C/C++ Application. The Main tab of the
configuration pane appears on the right side of the dialog box with the
following parameter settings:

Parameter Setting

Name throttlecntrl_externenv Default

C/C++ Application Default\throttlecntrl_externenv.exe

Project throttlecntrl_externenv

Build configuration Default

Enable auto build Cleared

Disable auto build Cleared

Use workspace settings Selected

3 Click Close.

Starting the Debugger
To start the debugger:

1 In the main Eclipse window, select Run > Debug. A Confirm Perspective
Switch dialog box opens.

2 Click Yes. Tabbed debugger panes that display debugging information and
controls are displayed in the main Eclipse window.

3 Specify the location of the project files. The Cygwin debugger creates
a virtual drive (for example, main() at /cygdrive/) during the build

A-7



A Installing and Using an IDE for the Integration and Testing Tutorials

process. To run the debugger, Eclipse remaps the drive or locates your
project files. Once Eclipse locates the first file, it automatically finds the
remaining files. In the Eclipse window, click Locate File. The Open
dialog box opens.

For information on using the Edit Source Lookup Path button, see
“Setting the Cygwin Path” on page A-8.

4 Navigate to the example_main.c file and click Open. Your program opens
in the debugger software.

Setting the Cygwin Path
The first time you run Eclipse, you get an error related to the Cygwin path.

To provide the necessary path information:

1 Open the Debug Configurations dialog box by selecting Run > Debug
Configurations > C/C++ Application.

2 Click the Source tab.

3 Click Add. The Add Source dialog box opens.

4 Select Path Mapping and click OK. The Path Mappings dialog box opens.

5 Click Add. In the Compilation path field, type \cygdrive\c\.

6 In the Local file system path field, click the Browse button, navigate to
your C:\ drive, and click OK.

7 Click Apply.

8 Click Close.

Actions and Commands in the Eclipse Debugger
The following actions and commands are available in the debugger.

A-8



Integrating and Testing Code with the Eclipse™ IDE

Action Command

Step into F5

Step over F6

Step out F7

Resume F8

Toggle break point Ctrl + Shift + B

A-9


	toc
	Product Overview
	Product Description
	Code Generation Technology
	Code Generation Extensions
	Target Environments and Applications
	About Target Environments
	Types of Target Environments Supported By Embedded Coder
	Applications of Supported Target Environments

	Prerequisite Knowledge
	MATLAB Users
	Simulink Users

	Algorithm Development Workflows

	MATLAB Tutorials
	About the Tutorials
	About MATLAB Coder
	How Embedded Coder Works With MATLAB Coder
	Prerequisites
	Setting Up Tutorial Files

	Controlling C Code Style
	About This Tutorial
	Learning Objectives
	Prerequisites
	Required Files

	Copying Files Locally
	Setting Up the MATLAB Coder Project
	Why Specify an Input Definition?
	Configuring Build Parameters
	Generating the C Code
	Viewing the Generated C Code
	Key Points to Remember
	Learn More

	Generating Reentrant C Code from MATLAB Code
	About This Tutorial
	Learning Objectives
	Prerequisites
	Required Files

	Copying Files Locally
	About the Example
	Contents of matrix_exp.m
	Providing a main Function
	Contents of main.c
	Configuring Build Parameters
	Generating the C Code
	Viewing the Generated C Code
	Running the Code
	Key Points to Remember
	Learn More

	Tracing Between Generated C Code and MATLAB Code
	About This Tutorial
	Learning Objectives
	Prerequisites
	Required File

	Copying Files Locally
	Contents of polar2cartesian.m
	Configuring Build Parameters
	Generating the C Code
	Viewing the Generated C Code
	Tracing Back to the Source MATLAB Code
	Key Points to Remember
	Learn More


	Simulink Tutorials
	About the Tutorials
	Introduction
	Prerequisites
	Third-Party Software
	Required Files

	Configuring Model and Generating Code
	About this Tutorial
	Learning Objectives
	Prerequisites
	Required File

	Configuring Model for Code Generation
	Checking Model for Adverse Conditions and Settings
	Generating Code
	Reviewing Generated Code
	Key Points
	Learn More

	Controlling Appearance of Generated Code
	About this Tutorial
	Learning Objectives
	Prerequisites
	Required File

	Customizing Code Comments
	Customizing Appearance of Identifiers
	Customizing Code Style
	Key Points
	Learn More

	Configuring Data Interface
	About this Tutorial
	Learning Objectives
	Prerequisites
	Required Files

	Creating Data Objects for Named Data in Base Workspace
	Configuring Data Objects
	Controlling Placement of Parameter and Constant Data in Generate
	Including Signal Data Objects in Generated Code
	Effects of Simulation on Data Typing
	Viewing Data Objects in Generated Code
	Saving Base Workspace Data
	Key Points
	Learn More

	Partitioning and Exporting Functions
	About this Tutorial
	Learning Objectives
	Prerequisites
	Required File

	Changing Model Architecture to Control Execution Order
	Controlling Function Location and File Placement in Generated Co
	Using Mask to Pass Parameters into Library Subsystem
	Generating Code for Full Model and Exported Functions
	Examining Masked Data in Generated Code

	Changing Execution Order and Simulation Results
	Key Points
	Learn More

	Integrating Generated Code into External Environment
	About this Tutorial
	Learning Objectives
	Prerequisites
	Required Files

	Relocating Code to Another Development Environment
	Integrating Generated Code into Existing System
	Setting Up Main Function
	Matching System Interfaces
	Building Project in Eclipse Environment
	Key Points
	Learn More

	Verifying Generated Code
	About this Tutorial
	Learning Objectives
	Prerequisites
	Required Files

	Methods for Verifying Generated Code
	Reusing Test Data By Importing and Exporting Test Vectors
	Verifying Behavior of Model with Software-in-the-Loop Testing
	Verifying System Behavior By Importing and Exporting Test Vector
	About the example_main.c
	Importing and Exporting Test Vectors Using the Eclipse Environme

	Testing with Processor-in-the-Loop Testing
	Key Points
	Learn More

	Evaluating Generated Code
	About this Tutorial
	Learning Objectives
	Prerequisites
	Required Files

	Evaluating Code
	About the Compiler
	Viewing Code Metrics
	About the Build Configurations
	Configuration 1: Reusable Functions, Data Type Double
	Configuration 2: Reusable Functions, Data Type Single
	Configuration 3: Nonreusable Functions, Data Type Single


	Installing and Using an IDE for the Integration and Testing Tuto
	Installing the Eclipse IDE and Cygwin Debugger
	Installing the Eclipse IDE
	Installing the Cygwin Debugger

	Integrating and Testing Code with the Eclipse IDE
	Introducing Eclipse
	Project Names and File Names

	Defining a New C Project
	Configuring the Debugger
	Starting the Debugger
	Setting the Cygwin Path
	Actions and Commands in the Eclipse Debugger



	tables
	Memory Usage
	Memory Usage
	Memory Usage


